// Package raft implements a Consensus component for IPFS Cluster which uses // Raft (go-libp2p-raft). package raft import ( "context" "errors" "fmt" "sort" "sync" "time" "github.com/ipfs/ipfs-cluster/api" "github.com/ipfs/ipfs-cluster/state" "github.com/ipfs/ipfs-cluster/state/dsstate" ds "github.com/ipfs/go-datastore" logging "github.com/ipfs/go-log" consensus "github.com/libp2p/go-libp2p-consensus" host "github.com/libp2p/go-libp2p-core/host" peer "github.com/libp2p/go-libp2p-core/peer" rpc "github.com/libp2p/go-libp2p-gorpc" libp2praft "github.com/libp2p/go-libp2p-raft" ma "github.com/multiformats/go-multiaddr" "go.opencensus.io/tag" "go.opencensus.io/trace" ) var logger = logging.Logger("raft") // Consensus handles the work of keeping a shared-state between // the peers of an IPFS Cluster, as well as modifying that state and // applying any updates in a thread-safe manner. type Consensus struct { ctx context.Context cancel func() config *Config host host.Host consensus consensus.OpLogConsensus actor consensus.Actor baseOp *LogOp raft *raftWrapper rpcClient *rpc.Client rpcReady chan struct{} readyCh chan struct{} shutdownLock sync.RWMutex shutdown bool } // NewConsensus builds a new ClusterConsensus component using Raft. // // Raft saves state snapshots regularly and persists log data in a bolt // datastore. Therefore, unless memory usage is a concern, it is recommended // to use an in-memory go-datastore as store parameter. // // The staging parameter controls if the Raft peer should start in // staging mode (used when joining a new Raft peerset with other peers). // // The store parameter should be a thread-safe datastore. func NewConsensus( host host.Host, cfg *Config, store ds.Datastore, staging bool, // this peer must not be bootstrapped if no state exists ) (*Consensus, error) { err := cfg.Validate() if err != nil { return nil, err } logger.Debug("starting Consensus and waiting for a leader...") baseOp := &LogOp{tracing: cfg.Tracing} state, err := dsstate.New( store, cfg.DatastoreNamespace, dsstate.DefaultHandle(), ) if err != nil { return nil, err } consensus := libp2praft.NewOpLog(state, baseOp) raft, err := newRaftWrapper(host, cfg, consensus.FSM(), staging) if err != nil { logger.Error("error creating raft: ", err) return nil, err } actor := libp2praft.NewActor(raft.raft) consensus.SetActor(actor) ctx, cancel := context.WithCancel(context.Background()) cc := &Consensus{ ctx: ctx, cancel: cancel, config: cfg, host: host, consensus: consensus, actor: actor, baseOp: baseOp, raft: raft, rpcReady: make(chan struct{}, 1), readyCh: make(chan struct{}, 1), } baseOp.consensus = cc go cc.finishBootstrap() return cc, nil } // WaitForSync waits for a leader and for the state to be up to date, then returns. func (cc *Consensus) WaitForSync(ctx context.Context) error { ctx, span := trace.StartSpan(ctx, "consensus/WaitForSync") defer span.End() leaderCtx, cancel := context.WithTimeout( ctx, cc.config.WaitForLeaderTimeout) defer cancel() // 1 - wait for leader // 2 - wait until we are a Voter // 3 - wait until last index is applied // From raft docs: // once a staging server receives enough log entries to be sufficiently // caught up to the leader's log, the leader will invoke a membership // change to change the Staging server to a Voter // Thus, waiting to be a Voter is a guarantee that we have a reasonable // up to date state. Otherwise, we might return too early (see // https://github.com/ipfs/ipfs-cluster/issues/378) _, err := cc.raft.WaitForLeader(leaderCtx) if err != nil { return errors.New("error waiting for leader: " + err.Error()) } err = cc.raft.WaitForVoter(ctx) if err != nil { return errors.New("error waiting to become a Voter: " + err.Error()) } err = cc.raft.WaitForUpdates(ctx) if err != nil { return errors.New("error waiting for consensus updates: " + err.Error()) } return nil } // waits until there is a consensus leader and syncs the state // to the tracker. If errors happen, this will return and never // signal the component as Ready. func (cc *Consensus) finishBootstrap() { // wait until we have RPC to perform any actions. select { case <-cc.ctx.Done(): return case <-cc.rpcReady: } // Sometimes bootstrap is a no-op. It only applies when // no state exists and staging=false. _, err := cc.raft.Bootstrap() if err != nil { return } err = cc.WaitForSync(cc.ctx) if err != nil { return } logger.Debug("Raft state is now up to date") logger.Debug("consensus ready") cc.readyCh <- struct{}{} } // Shutdown stops the component so it will not process any // more updates. The underlying consensus is permanently // shutdown, along with the libp2p transport. func (cc *Consensus) Shutdown(ctx context.Context) error { ctx, span := trace.StartSpan(ctx, "consensus/Shutdown") defer span.End() cc.shutdownLock.Lock() defer cc.shutdownLock.Unlock() if cc.shutdown { logger.Debug("already shutdown") return nil } logger.Info("stopping Consensus component") // Raft Shutdown err := cc.raft.Shutdown(ctx) if err != nil { logger.Error(err) } if cc.config.hostShutdown { cc.host.Close() } cc.shutdown = true cc.cancel() close(cc.rpcReady) return nil } // SetClient makes the component ready to perform RPC requets func (cc *Consensus) SetClient(c *rpc.Client) { cc.rpcClient = c cc.rpcReady <- struct{}{} } // Ready returns a channel which is signaled when the Consensus // algorithm has finished bootstrapping and is ready to use func (cc *Consensus) Ready(ctx context.Context) <-chan struct{} { ctx, span := trace.StartSpan(ctx, "consensus/Ready") defer span.End() return cc.readyCh } // IsTrustedPeer returns true. In Raft we trust all peers. func (cc *Consensus) IsTrustedPeer(ctx context.Context, p peer.ID) bool { return true } // Trust is a no-op. func (cc *Consensus) Trust(ctx context.Context, pid peer.ID) error { return nil } // Distrust is a no-op. func (cc *Consensus) Distrust(ctx context.Context, pid peer.ID) error { return nil } func (cc *Consensus) op(ctx context.Context, pin *api.Pin, t LogOpType) *LogOp { return &LogOp{ Cid: pin, Type: t, } } // returns true if the operation was redirected to the leader // note that if the leader just dissappeared, the rpc call will // fail because we haven't heard that it's gone. func (cc *Consensus) redirectToLeader(method string, arg interface{}) (bool, error) { ctx, span := trace.StartSpan(cc.ctx, "consensus/redirectToLeader") defer span.End() var finalErr error // Retry redirects for i := 0; i <= cc.config.CommitRetries; i++ { logger.Debugf("redirect try %d", i) leader, err := cc.Leader(ctx) // No leader, wait for one if err != nil { logger.Warning("there seems to be no leader. Waiting for one") rctx, cancel := context.WithTimeout( ctx, cc.config.WaitForLeaderTimeout, ) defer cancel() pidstr, err := cc.raft.WaitForLeader(rctx) // means we timed out waiting for a leader // we don't retry in this case if err != nil { return false, fmt.Errorf("timed out waiting for leader: %s", err) } leader, err = peer.IDB58Decode(pidstr) if err != nil { return false, err } } // We are the leader. Do not redirect if leader == cc.host.ID() { return false, nil } logger.Debugf("redirecting %s to leader: %s", method, leader.Pretty()) finalErr = cc.rpcClient.CallContext( ctx, leader, "Consensus", method, arg, &struct{}{}, ) if finalErr != nil { logger.Errorf("retrying to redirect request to leader: %s", finalErr) time.Sleep(2 * cc.config.RaftConfig.HeartbeatTimeout) continue } break } // We tried to redirect, but something happened return true, finalErr } // commit submits a cc.consensus commit. It retries upon failures. func (cc *Consensus) commit(ctx context.Context, op *LogOp, rpcOp string, redirectArg interface{}) error { ctx, span := trace.StartSpan(ctx, "consensus/commit") defer span.End() if cc.config.Tracing { // required to cross the serialized boundary op.SpanCtx = span.SpanContext() tagmap := tag.FromContext(ctx) if tagmap != nil { op.TagCtx = tag.Encode(tagmap) } } var finalErr error for i := 0; i <= cc.config.CommitRetries; i++ { logger.Debugf("attempt #%d: committing %+v", i, op) // this means we are retrying if finalErr != nil { logger.Errorf("retrying upon failed commit (retry %d): %s ", i, finalErr) } // try to send it to the leader // redirectToLeader has it's own retry loop. If this fails // we're done here. ok, err := cc.redirectToLeader(rpcOp, redirectArg) if err != nil || ok { return err } // Being here means we are the LEADER. We can commit. // now commit the changes to our state cc.shutdownLock.RLock() // do not shut down while committing _, finalErr = cc.consensus.CommitOp(op) cc.shutdownLock.RUnlock() if finalErr != nil { goto RETRY } switch op.Type { case LogOpPin: logger.Infof("pin committed to global state: %s", op.Cid.Cid) case LogOpUnpin: logger.Infof("unpin committed to global state: %s", op.Cid.Cid) } break RETRY: time.Sleep(cc.config.CommitRetryDelay) } return finalErr } // LogPin submits a Cid to the shared state of the cluster. It will forward // the operation to the leader if this is not it. func (cc *Consensus) LogPin(ctx context.Context, pin *api.Pin) error { ctx, span := trace.StartSpan(ctx, "consensus/LogPin") defer span.End() op := cc.op(ctx, pin, LogOpPin) err := cc.commit(ctx, op, "LogPin", pin) if err != nil { return err } return nil } // LogUnpin removes a Cid from the shared state of the cluster. func (cc *Consensus) LogUnpin(ctx context.Context, pin *api.Pin) error { ctx, span := trace.StartSpan(ctx, "consensus/LogUnpin") defer span.End() op := cc.op(ctx, pin, LogOpUnpin) err := cc.commit(ctx, op, "LogUnpin", pin) if err != nil { return err } return nil } // AddPeer adds a new peer to participate in this consensus. It will // forward the operation to the leader if this is not it. func (cc *Consensus) AddPeer(ctx context.Context, pid peer.ID) error { ctx, span := trace.StartSpan(ctx, "consensus/AddPeer") defer span.End() var finalErr error for i := 0; i <= cc.config.CommitRetries; i++ { logger.Debugf("attempt #%d: AddPeer %s", i, pid.Pretty()) if finalErr != nil { logger.Errorf("retrying to add peer. Attempt #%d failed: %s", i, finalErr) } ok, err := cc.redirectToLeader("AddPeer", pid) if err != nil || ok { return err } // Being here means we are the leader and can commit cc.shutdownLock.RLock() // do not shutdown while committing finalErr = cc.raft.AddPeer(ctx, peer.IDB58Encode(pid)) cc.shutdownLock.RUnlock() if finalErr != nil { time.Sleep(cc.config.CommitRetryDelay) continue } logger.Infof("peer added to Raft: %s", pid.Pretty()) break } return finalErr } // RmPeer removes a peer from this consensus. It will // forward the operation to the leader if this is not it. func (cc *Consensus) RmPeer(ctx context.Context, pid peer.ID) error { ctx, span := trace.StartSpan(ctx, "consensus/RmPeer") defer span.End() var finalErr error for i := 0; i <= cc.config.CommitRetries; i++ { logger.Debugf("attempt #%d: RmPeer %s", i, pid.Pretty()) if finalErr != nil { logger.Errorf("retrying to remove peer. Attempt #%d failed: %s", i, finalErr) } ok, err := cc.redirectToLeader("RmPeer", pid) if err != nil || ok { return err } // Being here means we are the leader and can commit cc.shutdownLock.RLock() // do not shutdown while committing finalErr = cc.raft.RemovePeer(ctx, peer.IDB58Encode(pid)) cc.shutdownLock.RUnlock() if finalErr != nil { time.Sleep(cc.config.CommitRetryDelay) continue } logger.Infof("peer removed from Raft: %s", pid.Pretty()) break } return finalErr } // State retrieves the current consensus State. It may error if no State has // been agreed upon or the state is not consistent. The returned State is the // last agreed-upon State known by this node. No writes are allowed, as all // writes to the shared state should happen through the Consensus component // methods. func (cc *Consensus) State(ctx context.Context) (state.ReadOnly, error) { ctx, span := trace.StartSpan(ctx, "consensus/State") defer span.End() st, err := cc.consensus.GetLogHead() if err == libp2praft.ErrNoState { return state.Empty(), nil } if err != nil { return nil, err } state, ok := st.(state.State) if !ok { return nil, errors.New("wrong state type") } return state, nil } // Leader returns the peerID of the Leader of the // cluster. It returns an error when there is no leader. func (cc *Consensus) Leader(ctx context.Context) (peer.ID, error) { ctx, span := trace.StartSpan(ctx, "consensus/Leader") defer span.End() // Note the hard-dependency on raft here... raftactor := cc.actor.(*libp2praft.Actor) return raftactor.Leader() } // Clean removes the Raft persisted state. func (cc *Consensus) Clean(ctx context.Context) error { ctx, span := trace.StartSpan(ctx, "consensus/Clean") defer span.End() cc.shutdownLock.RLock() defer cc.shutdownLock.RUnlock() if !cc.shutdown { return errors.New("consensus component is not shutdown") } return CleanupRaft(cc.config) } // Rollback replaces the current agreed-upon // state with the state provided. Only the consensus leader // can perform this operation. func (cc *Consensus) Rollback(state state.State) error { // This is unused. It *might* be used for upgrades. // There is rather untested magic in libp2p-raft's FSM() // to make this possible. return cc.consensus.Rollback(state) } // Peers return the current list of peers in the consensus. // The list will be sorted alphabetically. func (cc *Consensus) Peers(ctx context.Context) ([]peer.ID, error) { ctx, span := trace.StartSpan(ctx, "consensus/Peers") defer span.End() cc.shutdownLock.RLock() // prevent shutdown while here defer cc.shutdownLock.RUnlock() if cc.shutdown { // things hang a lot in this case return nil, errors.New("consensus is shutdown") } peers := []peer.ID{} raftPeers, err := cc.raft.Peers(ctx) if err != nil { return nil, fmt.Errorf("cannot retrieve list of peers: %s", err) } sort.Strings(raftPeers) for _, p := range raftPeers { id, err := peer.IDB58Decode(p) if err != nil { panic("could not decode peer") } peers = append(peers, id) } return peers, nil } func parsePIDFromMultiaddr(addr ma.Multiaddr) string { pidstr, err := addr.ValueForProtocol(ma.P_P2P) if err != nil { panic("peer badly encoded") } return pidstr } // OfflineState state returns a cluster state by reading the Raft data and // writing it to the given datastore which is then wrapped as a state.State. // Usually an in-memory datastore suffices. The given datastore should be // thread-safe. func OfflineState(cfg *Config, store ds.Datastore) (state.State, error) { r, snapExists, err := LastStateRaw(cfg) if err != nil { return nil, err } st, err := dsstate.New(store, cfg.DatastoreNamespace, dsstate.DefaultHandle()) if err != nil { return nil, err } if !snapExists { return st, nil } err = st.Unmarshal(r) if err != nil { return nil, err } return st, nil }