// Package ipfshttp implements an IPFS Cluster IPFSConnector component. It // uses the IPFS HTTP API to communicate to IPFS. package ipfshttp import ( "context" "encoding/json" "errors" "fmt" "io" "io/ioutil" "net/http" "strings" "sync" "time" "github.com/ipfs/ipfs-cluster/api" cid "github.com/ipfs/go-cid" files "github.com/ipfs/go-ipfs-files" logging "github.com/ipfs/go-log" rpc "github.com/libp2p/go-libp2p-gorpc" peer "github.com/libp2p/go-libp2p-peer" ma "github.com/multiformats/go-multiaddr" madns "github.com/multiformats/go-multiaddr-dns" manet "github.com/multiformats/go-multiaddr-net" ) // DNSTimeout is used when resolving DNS multiaddresses in this module var DNSTimeout = 5 * time.Second var logger = logging.Logger("ipfshttp") // updateMetricsMod only makes updates to informer metrics // on the nth occasion. So, for example, for every BlockPut, // only the 10th will trigger a SendInformerMetrics call. var updateMetricMod = 10 // Connector implements the IPFSConnector interface // and provides a component which is used to perform // on-demand requests against the configured IPFS daemom // (such as a pin request). type Connector struct { ctx context.Context cancel func() config *Config nodeAddr string rpcClient *rpc.Client rpcReady chan struct{} client *http.Client // client to ipfs daemon updateMetricMutex sync.Mutex updateMetricCount int shutdownLock sync.Mutex shutdown bool wg sync.WaitGroup } type ipfsError struct { Message string } type ipfsPinType struct { Type string } type ipfsPinLsResp struct { Keys map[string]ipfsPinType } type ipfsIDResp struct { ID string Addresses []string } type ipfsSwarmPeersResp struct { Peers []ipfsPeer } type ipfsPeer struct { Peer string } type ipfsStream struct { Protocol string } // NewConnector creates the component and leaves it ready to be started func NewConnector(cfg *Config) (*Connector, error) { err := cfg.Validate() if err != nil { return nil, err } nodeMAddr := cfg.NodeAddr // dns multiaddresses need to be resolved first if madns.Matches(nodeMAddr) { ctx, cancel := context.WithTimeout(context.Background(), DNSTimeout) defer cancel() resolvedAddrs, err := madns.Resolve(ctx, cfg.NodeAddr) if err != nil { logger.Error(err) return nil, err } nodeMAddr = resolvedAddrs[0] } _, nodeAddr, err := manet.DialArgs(nodeMAddr) if err != nil { return nil, err } c := &http.Client{} // timeouts are handled by context timeouts ctx, cancel := context.WithCancel(context.Background()) ipfs := &Connector{ ctx: ctx, config: cfg, cancel: cancel, nodeAddr: nodeAddr, rpcReady: make(chan struct{}, 1), client: c, } go ipfs.run() return ipfs, nil } // connects all ipfs daemons when // we receive the rpcReady signal. func (ipfs *Connector) run() { <-ipfs.rpcReady // Do not shutdown while launching threads // -- prevents race conditions with ipfs.wg. ipfs.shutdownLock.Lock() defer ipfs.shutdownLock.Unlock() // This runs ipfs swarm connect to the daemons of other cluster members ipfs.wg.Add(1) go func() { defer ipfs.wg.Done() // It does not hurt to wait a little bit. i.e. think cluster // peers which are started at the same time as the ipfs // daemon... tmr := time.NewTimer(ipfs.config.ConnectSwarmsDelay) defer tmr.Stop() select { case <-tmr.C: // do not hang this goroutine if this call hangs // otherwise we hang during shutdown go ipfs.ConnectSwarms() case <-ipfs.ctx.Done(): return } }() } // SetClient makes the component ready to perform RPC // requests. func (ipfs *Connector) SetClient(c *rpc.Client) { ipfs.rpcClient = c ipfs.rpcReady <- struct{}{} } // Shutdown stops any listeners and stops the component from taking // any requests. func (ipfs *Connector) Shutdown() error { ipfs.shutdownLock.Lock() defer ipfs.shutdownLock.Unlock() if ipfs.shutdown { logger.Debug("already shutdown") return nil } logger.Info("stopping IPFS Connector") ipfs.cancel() close(ipfs.rpcReady) ipfs.wg.Wait() ipfs.shutdown = true return nil } // ID performs an ID request against the configured // IPFS daemon. It returns the fetched information. // If the request fails, or the parsing fails, it // returns an error and an empty IPFSID which also // contains the error message. func (ipfs *Connector) ID() (api.IPFSID, error) { ctx, cancel := context.WithTimeout(ipfs.ctx, ipfs.config.IPFSRequestTimeout) defer cancel() id := api.IPFSID{} body, err := ipfs.postCtx(ctx, "id", "", nil) if err != nil { id.Error = err.Error() return id, err } var res ipfsIDResp err = json.Unmarshal(body, &res) if err != nil { id.Error = err.Error() return id, err } pID, err := peer.IDB58Decode(res.ID) if err != nil { id.Error = err.Error() return id, err } id.ID = pID mAddrs := make([]ma.Multiaddr, len(res.Addresses), len(res.Addresses)) for i, strAddr := range res.Addresses { mAddr, err := ma.NewMultiaddr(strAddr) if err != nil { id.Error = err.Error() return id, err } mAddrs[i] = mAddr } id.Addresses = mAddrs return id, nil } // Pin performs a pin request against the configured IPFS // daemon. func (ipfs *Connector) Pin(ctx context.Context, hash cid.Cid, maxDepth int) error { ctx, cancel := context.WithTimeout(ctx, ipfs.config.PinTimeout) defer cancel() pinStatus, err := ipfs.PinLsCid(ctx, hash) if err != nil { return err } if pinStatus.IsPinned(maxDepth) { logger.Debug("IPFS object is already pinned: ", hash) return nil } defer ipfs.updateInformerMetric() var pinArgs string switch { case maxDepth < 0: pinArgs = "recursive=true" case maxDepth == 0: pinArgs = "recursive=false" default: pinArgs = fmt.Sprintf("recursive=true&max-depth=%d", maxDepth) } switch ipfs.config.PinMethod { case "refs": // do refs -r first path := fmt.Sprintf("refs?arg=%s&%s", hash, pinArgs) err := ipfs.postDiscardBodyCtx(ctx, path) if err != nil { return err } logger.Debugf("Refs for %s sucessfully fetched", hash) } path := fmt.Sprintf("pin/add?arg=%s&%s", hash, pinArgs) _, err = ipfs.postCtx(ctx, path, "", nil) if err == nil { logger.Info("IPFS Pin request succeeded: ", hash) } return err } // Unpin performs an unpin request against the configured IPFS // daemon. func (ipfs *Connector) Unpin(ctx context.Context, hash cid.Cid) error { ctx, cancel := context.WithTimeout(ctx, ipfs.config.UnpinTimeout) defer cancel() pinStatus, err := ipfs.PinLsCid(ctx, hash) if err != nil { return err } if pinStatus.IsPinned(-1) { defer ipfs.updateInformerMetric() path := fmt.Sprintf("pin/rm?arg=%s", hash) _, err := ipfs.postCtx(ctx, path, "", nil) if err == nil { logger.Info("IPFS Unpin request succeeded:", hash) } return err } logger.Debug("IPFS object is already unpinned: ", hash) return nil } // PinLs performs a "pin ls --type typeFilter" request against the configured // IPFS daemon and returns a map of cid strings and their status. func (ipfs *Connector) PinLs(ctx context.Context, typeFilter string) (map[string]api.IPFSPinStatus, error) { ctx, cancel := context.WithTimeout(ctx, ipfs.config.IPFSRequestTimeout) defer cancel() body, err := ipfs.postCtx(ctx, "pin/ls?type="+typeFilter, "", nil) // Some error talking to the daemon if err != nil { return nil, err } var res ipfsPinLsResp err = json.Unmarshal(body, &res) if err != nil { logger.Error("parsing pin/ls response") logger.Error(string(body)) return nil, err } statusMap := make(map[string]api.IPFSPinStatus) for k, v := range res.Keys { statusMap[k] = api.IPFSPinStatusFromString(v.Type) } return statusMap, nil } // PinLsCid performs a "pin ls " request. It first tries with // "type=recursive" and then, if not found, with "type=direct". It returns an // api.IPFSPinStatus for that hash. func (ipfs *Connector) PinLsCid(ctx context.Context, hash cid.Cid) (api.IPFSPinStatus, error) { pinLsType := func(pinType string) ([]byte, error) { ctx, cancel := context.WithTimeout(ctx, ipfs.config.IPFSRequestTimeout) defer cancel() lsPath := fmt.Sprintf("pin/ls?arg=%s&type=%s", hash, pinType) return ipfs.postCtx(ctx, lsPath, "", nil) } var body []byte var err error // FIXME: Sharding may need to check more pin types here. for _, pinType := range []string{"recursive", "direct"} { body, err = pinLsType(pinType) // Network error, daemon down if body == nil && err != nil { return api.IPFSPinStatusError, err } // Pin found. Do not keep looking. if err == nil { break } } if err != nil { // we could not find the pin return api.IPFSPinStatusUnpinned, nil } var res ipfsPinLsResp err = json.Unmarshal(body, &res) if err != nil { logger.Error("parsing pin/ls?arg=cid response:") logger.Error(string(body)) return api.IPFSPinStatusError, err } pinObj, ok := res.Keys[hash.String()] if !ok { return api.IPFSPinStatusError, errors.New("expected to find the pin in the response") } return api.IPFSPinStatusFromString(pinObj.Type), nil } func (ipfs *Connector) doPostCtx(ctx context.Context, client *http.Client, apiURL, path string, contentType string, postBody io.Reader) (*http.Response, error) { logger.Debugf("posting %s", path) urlstr := fmt.Sprintf("%s/%s", apiURL, path) req, err := http.NewRequest("POST", urlstr, postBody) if err != nil { logger.Error("error creating POST request:", err) } req.Header.Set("Content-Type", contentType) req = req.WithContext(ctx) res, err := ipfs.client.Do(req) if err != nil { logger.Error("error posting to IPFS:", err) } return res, err } // checkResponse tries to parse an error message on non StatusOK responses // from ipfs. func checkResponse(path string, code int, body []byte) error { if code == http.StatusOK { return nil } var ipfsErr ipfsError if body != nil && json.Unmarshal(body, &ipfsErr) == nil { return fmt.Errorf("IPFS unsuccessful: %d: %s", code, ipfsErr.Message) } // No error response with useful message from ipfs return fmt.Errorf("IPFS-post '%s' unsuccessful: %d: %s", path, code, body) } // postCtx makes a POST request against // the ipfs daemon, reads the full body of the response and // returns it after checking for errors. func (ipfs *Connector) postCtx(ctx context.Context, path string, contentType string, postBody io.Reader) ([]byte, error) { res, err := ipfs.doPostCtx(ctx, ipfs.client, ipfs.apiURL(), path, contentType, postBody) if err != nil { return nil, err } defer res.Body.Close() body, err := ioutil.ReadAll(res.Body) if err != nil { logger.Errorf("error reading response body: %s", err) return nil, err } return body, checkResponse(path, res.StatusCode, body) } // postDiscardBodyCtx makes a POST requests but discards the body // of the response directly after reading it. func (ipfs *Connector) postDiscardBodyCtx(ctx context.Context, path string) error { res, err := ipfs.doPostCtx(ctx, ipfs.client, ipfs.apiURL(), path, "", nil) if err != nil { return err } defer res.Body.Close() _, err = io.Copy(ioutil.Discard, res.Body) if err != nil { return err } return checkResponse(path, res.StatusCode, nil) } // apiURL is a short-hand for building the url of the IPFS // daemon API. func (ipfs *Connector) apiURL() string { return fmt.Sprintf("http://%s/api/v0", ipfs.nodeAddr) } // ConnectSwarms requests the ipfs addresses of other peers and // triggers ipfs swarm connect requests func (ipfs *Connector) ConnectSwarms() error { ctx, cancel := context.WithTimeout(ipfs.ctx, ipfs.config.IPFSRequestTimeout) defer cancel() idsSerial := make([]api.IDSerial, 0) err := ipfs.rpcClient.Call( "", "Cluster", "Peers", struct{}{}, &idsSerial, ) if err != nil { logger.Error(err) return err } logger.Debugf("%+v", idsSerial) for _, idSerial := range idsSerial { ipfsID := idSerial.IPFS for _, addr := range ipfsID.Addresses { // This is a best effort attempt // We ignore errors which happens // when passing in a bunch of addresses _, err := ipfs.postCtx( ctx, fmt.Sprintf("swarm/connect?arg=%s", addr), "", nil, ) if err != nil { logger.Debug(err) continue } logger.Debugf("ipfs successfully connected to %s", addr) } } return nil } // ConfigKey fetches the IPFS daemon configuration and retrieves the value for // a given configuration key. For example, "Datastore/StorageMax" will return // the value for StorageMax in the Datastore configuration object. func (ipfs *Connector) ConfigKey(keypath string) (interface{}, error) { ctx, cancel := context.WithTimeout(ipfs.ctx, ipfs.config.IPFSRequestTimeout) defer cancel() res, err := ipfs.postCtx(ctx, "config/show", "", nil) if err != nil { logger.Error(err) return nil, err } var cfg map[string]interface{} err = json.Unmarshal(res, &cfg) if err != nil { logger.Error(err) return nil, err } path := strings.SplitN(keypath, "/", 2) if len(path) == 0 { return nil, errors.New("cannot lookup without a path") } return getConfigValue(path, cfg) } func getConfigValue(path []string, cfg map[string]interface{}) (interface{}, error) { value, ok := cfg[path[0]] if !ok { return nil, errors.New("key not found in configuration") } if len(path) == 1 { return value, nil } switch value.(type) { case map[string]interface{}: v := value.(map[string]interface{}) return getConfigValue(path[1:], v) default: return nil, errors.New("invalid path") } } // RepoStat returns the DiskUsage and StorageMax repo/stat values from the // ipfs daemon, in bytes, wrapped as an IPFSRepoStat object. func (ipfs *Connector) RepoStat() (api.IPFSRepoStat, error) { ctx, cancel := context.WithTimeout(ipfs.ctx, ipfs.config.IPFSRequestTimeout) defer cancel() res, err := ipfs.postCtx(ctx, "repo/stat?size-only=true", "", nil) if err != nil { logger.Error(err) return api.IPFSRepoStat{}, err } var stats api.IPFSRepoStat err = json.Unmarshal(res, &stats) if err != nil { logger.Error(err) return stats, err } return stats, nil } // SwarmPeers returns the peers currently connected to this ipfs daemon. func (ipfs *Connector) SwarmPeers() (api.SwarmPeers, error) { ctx, cancel := context.WithTimeout(ipfs.ctx, ipfs.config.IPFSRequestTimeout) defer cancel() swarm := api.SwarmPeers{} res, err := ipfs.postCtx(ctx, "swarm/peers", "", nil) if err != nil { logger.Error(err) return swarm, err } var peersRaw ipfsSwarmPeersResp err = json.Unmarshal(res, &peersRaw) if err != nil { logger.Error(err) return swarm, err } swarm = make([]peer.ID, len(peersRaw.Peers)) for i, p := range peersRaw.Peers { pID, err := peer.IDB58Decode(p.Peer) if err != nil { logger.Error(err) return swarm, err } swarm[i] = pID } return swarm, nil } // BlockPut triggers an ipfs block put on the given data, inserting the block // into the ipfs daemon's repo. func (ipfs *Connector) BlockPut(b api.NodeWithMeta) error { logger.Debugf("putting block to IPFS: %s", b.Cid) ctx, cancel := context.WithTimeout(ipfs.ctx, ipfs.config.IPFSRequestTimeout) defer cancel() defer ipfs.updateInformerMetric() mapDir := files.NewMapDirectory( map[string]files.Node{ // IPFS reqs require a wrapping directory "": files.NewBytesFile(b.Data), }, ) multiFileR := files.NewMultiFileReader(mapDir, true) if b.Format == "" { b.Format = "v0" } url := "block/put?f=" + b.Format contentType := "multipart/form-data; boundary=" + multiFileR.Boundary() _, err := ipfs.postCtx(ctx, url, contentType, multiFileR) return err } // BlockGet retrieves an ipfs block with the given cid func (ipfs *Connector) BlockGet(c cid.Cid) ([]byte, error) { ctx, cancel := context.WithTimeout(ipfs.ctx, ipfs.config.IPFSRequestTimeout) defer cancel() url := "block/get?arg=" + c.String() return ipfs.postCtx(ctx, url, "", nil) } // Returns true every updateMetricsMod-th time that we // call this function. func (ipfs *Connector) shouldUpdateMetric() bool { ipfs.updateMetricMutex.Lock() defer ipfs.updateMetricMutex.Unlock() ipfs.updateMetricCount++ if ipfs.updateMetricCount%updateMetricMod == 0 { ipfs.updateMetricCount = 0 return true } return false } // Trigger a broadcast of the local informer metrics. func (ipfs *Connector) updateInformerMetric() error { if !ipfs.shouldUpdateMetric() { return nil } var metric api.Metric err := ipfs.rpcClient.GoContext( ipfs.ctx, "", "Cluster", "SendInformerMetric", struct{}{}, &metric, nil, ) if err != nil { logger.Error(err) } return err }