ipfs-cluster/consensus/crdt/config.go

184 lines
4.8 KiB
Go
Raw Normal View History

Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
package crdt
import (
"encoding/json"
"errors"
"fmt"
"time"
"github.com/ipfs/ipfs-cluster/api"
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
"github.com/ipfs/ipfs-cluster/config"
peer "github.com/libp2p/go-libp2p-core/peer"
"github.com/kelseyhightower/envconfig"
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
)
var configKey = "crdt"
var envConfigKey = "cluster_crdt"
// Default configuration values
var (
DefaultClusterName = "ipfs-cluster"
DefaultPeersetMetric = "ping"
DefaultDatastoreNamespace = "/c" // from "/crdt"
DefaultRebroadcastInterval = time.Minute
DefaultTrustedPeers = []peer.ID{}
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
)
// Config is the configuration object for Consensus.
type Config struct {
config.Saver
hostShutdown bool
// The topic we wish to subscribe to
ClusterName string
// TrustAll specifies whether we should trust all peers regardless of
// the TrustedPeers contents.
TrustAll bool
// Any update received from a peer outside this set is ignored and not
// forwarded. Trusted peers can also access additional RPC endpoints
// for this peer that are forbidden for other peers.
TrustedPeers []peer.ID
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
// The interval before re-announcing the current state
// to the network when no activity is observed.
RebroadcastInterval time.Duration
// The name of the metric we use to obtain the peerset (every peer
// with valid metric of this type is part of it).
PeersetMetric string
// All keys written to the datastore will be namespaced with this prefix
DatastoreNamespace string
// Tracing enables propagation of contexts across binary boundaries.
Tracing bool
}
type jsonConfig struct {
ClusterName string `json:"cluster_name"`
TrustedPeers []string `json:"trusted_peers"`
RebroadcastInterval string `json:"rebroadcast_interval,omitempty"`
PeersetMetric string `json:"peerset_metric,omitempty"`
DatastoreNamespace string `json:"datastore_namespace,omitempty"`
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
}
// ConfigKey returns the section name for this type of configuration.
func (cfg *Config) ConfigKey() string {
return configKey
}
// Validate returns an error if the configuration has invalid values.
func (cfg *Config) Validate() error {
if cfg.ClusterName == "" {
return errors.New("crdt.cluster_name cannot be empty")
}
if cfg.PeersetMetric == "" {
return errors.New("crdt.peerset_metric needs a name")
}
if cfg.RebroadcastInterval <= 0 {
return errors.New("crdt.rebroadcast_interval is invalid")
}
return nil
}
// LoadJSON takes a raw JSON slice and sets all the configuration fields.
func (cfg *Config) LoadJSON(raw []byte) error {
jcfg := &jsonConfig{}
err := json.Unmarshal(raw, jcfg)
if err != nil {
return fmt.Errorf("error unmarshaling %s config", configKey)
}
cfg.Default()
return cfg.applyJSONConfig(jcfg)
}
func (cfg *Config) applyJSONConfig(jcfg *jsonConfig) error {
config.SetIfNotDefault(jcfg.ClusterName, &cfg.ClusterName)
for _, p := range jcfg.TrustedPeers {
if p == "*" {
cfg.TrustAll = true
cfg.TrustedPeers = []peer.ID{}
break
}
pid, err := peer.IDB58Decode(p)
if err != nil {
return fmt.Errorf("error parsing trusted peers: %s", err)
}
cfg.TrustedPeers = append(cfg.TrustedPeers, pid)
}
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
config.SetIfNotDefault(jcfg.PeersetMetric, &cfg.PeersetMetric)
config.SetIfNotDefault(jcfg.DatastoreNamespace, &cfg.DatastoreNamespace)
config.ParseDurations(
"crdt",
&config.DurationOpt{Duration: jcfg.RebroadcastInterval, Dst: &cfg.RebroadcastInterval, Name: "rebroadcast_interval"},
)
return cfg.Validate()
}
// ToJSON returns the JSON representation of this configuration.
func (cfg *Config) ToJSON() ([]byte, error) {
jcfg := cfg.toJSONConfig()
return config.DefaultJSONMarshal(jcfg)
}
func (cfg *Config) toJSONConfig() *jsonConfig {
jcfg := &jsonConfig{
ClusterName: cfg.ClusterName,
TrustedPeers: api.PeersToStrings(cfg.TrustedPeers),
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
PeersetMetric: "",
RebroadcastInterval: "",
}
if cfg.PeersetMetric != DefaultPeersetMetric {
jcfg.PeersetMetric = cfg.PeersetMetric
// otherwise leave empty/hidden
}
if cfg.DatastoreNamespace != DefaultDatastoreNamespace {
jcfg.DatastoreNamespace = cfg.DatastoreNamespace
// otherwise leave empty/hidden
}
if cfg.RebroadcastInterval != DefaultRebroadcastInterval {
jcfg.RebroadcastInterval = cfg.RebroadcastInterval.String()
}
return jcfg
}
// Default sets the configuration fields to their default values.
func (cfg *Config) Default() error {
cfg.ClusterName = DefaultClusterName
cfg.RebroadcastInterval = DefaultRebroadcastInterval
cfg.PeersetMetric = DefaultPeersetMetric
cfg.DatastoreNamespace = DefaultDatastoreNamespace
cfg.TrustedPeers = DefaultTrustedPeers
cfg.TrustAll = false
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
return nil
}
// ApplyEnvVars fills in any Config fields found
// as environment variables.
func (cfg *Config) ApplyEnvVars() error {
jcfg := cfg.toJSONConfig()
err := envconfig.Process(envConfigKey, jcfg)
if err != nil {
return err
}
return cfg.applyJSONConfig(jcfg)
}