ipfs-cluster/ipfscluster_test.go

2246 lines
54 KiB
Go
Raw Normal View History

package ipfscluster
import (
"context"
"errors"
"flag"
"fmt"
"math/rand"
"mime/multipart"
"os"
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
"path/filepath"
"sort"
"strings"
"sync"
"testing"
"time"
"github.com/ipfs/ipfs-cluster/allocator/balanced"
"github.com/ipfs/ipfs-cluster/api"
Issue #162: Rework configuration format The following commit reimplements ipfs-cluster configuration under the following premises: * Each component is initialized with a configuration object defined by its module * Each component decides how the JSON representation of its configuration looks like * Each component parses and validates its own configuration * Each component exposes its own defaults * Component configurations are make the sections of a central JSON configuration file (which replaces the current JSON format) * Component configurations implement a common interface (config.ComponentConfig) with a set of common operations * The central configuration file is managed by a config.ConfigManager which: * Registers ComponentConfigs * Assigns the correspondent sections from the JSON file to each component and delegates the parsing * Delegates the JSON generation for each section * Can be notified when the configuration is updated and must be saved to disk The new service.json would then look as follows: ```json { "cluster": { "id": "QmTVW8NoRxC5wBhV7WtAYtRn7itipEESfozWN5KmXUQnk2", "private_key": "<...>", "secret": "00224102ae6aaf94f2606abf69a0e278251ecc1d64815b617ff19d6d2841f786", "peers": [], "bootstrap": [], "leave_on_shutdown": false, "listen_multiaddress": "/ip4/0.0.0.0/tcp/9096", "state_sync_interval": "1m0s", "ipfs_sync_interval": "2m10s", "replication_factor": -1, "monitor_ping_interval": "15s" }, "consensus": { "raft": { "heartbeat_timeout": "1s", "election_timeout": "1s", "commit_timeout": "50ms", "max_append_entries": 64, "trailing_logs": 10240, "snapshot_interval": "2m0s", "snapshot_threshold": 8192, "leader_lease_timeout": "500ms" } }, "api": { "restapi": { "listen_multiaddress": "/ip4/127.0.0.1/tcp/9094", "read_timeout": "30s", "read_header_timeout": "5s", "write_timeout": "1m0s", "idle_timeout": "2m0s" } }, "ipfs_connector": { "ipfshttp": { "proxy_listen_multiaddress": "/ip4/127.0.0.1/tcp/9095", "node_multiaddress": "/ip4/127.0.0.1/tcp/5001", "connect_swarms_delay": "7s", "proxy_read_timeout": "10m0s", "proxy_read_header_timeout": "5s", "proxy_write_timeout": "10m0s", "proxy_idle_timeout": "1m0s" } }, "monitor": { "monbasic": { "check_interval": "15s" } }, "informer": { "disk": { "metric_ttl": "30s", "metric_type": "freespace" }, "numpin": { "metric_ttl": "10s" } } } ``` This new format aims to be easily extensible per component. As such, it already surfaces quite a few new options which were hardcoded before. Additionally, since Go API have changed, some redundant methods have been removed and small refactoring has happened to take advantage of the new way. License: MIT Signed-off-by: Hector Sanjuan <hector@protocol.ai>
2017-10-11 18:23:03 +00:00
"github.com/ipfs/ipfs-cluster/api/rest"
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
"github.com/ipfs/ipfs-cluster/consensus/crdt"
Issue #162: Rework configuration format The following commit reimplements ipfs-cluster configuration under the following premises: * Each component is initialized with a configuration object defined by its module * Each component decides how the JSON representation of its configuration looks like * Each component parses and validates its own configuration * Each component exposes its own defaults * Component configurations are make the sections of a central JSON configuration file (which replaces the current JSON format) * Component configurations implement a common interface (config.ComponentConfig) with a set of common operations * The central configuration file is managed by a config.ConfigManager which: * Registers ComponentConfigs * Assigns the correspondent sections from the JSON file to each component and delegates the parsing * Delegates the JSON generation for each section * Can be notified when the configuration is updated and must be saved to disk The new service.json would then look as follows: ```json { "cluster": { "id": "QmTVW8NoRxC5wBhV7WtAYtRn7itipEESfozWN5KmXUQnk2", "private_key": "<...>", "secret": "00224102ae6aaf94f2606abf69a0e278251ecc1d64815b617ff19d6d2841f786", "peers": [], "bootstrap": [], "leave_on_shutdown": false, "listen_multiaddress": "/ip4/0.0.0.0/tcp/9096", "state_sync_interval": "1m0s", "ipfs_sync_interval": "2m10s", "replication_factor": -1, "monitor_ping_interval": "15s" }, "consensus": { "raft": { "heartbeat_timeout": "1s", "election_timeout": "1s", "commit_timeout": "50ms", "max_append_entries": 64, "trailing_logs": 10240, "snapshot_interval": "2m0s", "snapshot_threshold": 8192, "leader_lease_timeout": "500ms" } }, "api": { "restapi": { "listen_multiaddress": "/ip4/127.0.0.1/tcp/9094", "read_timeout": "30s", "read_header_timeout": "5s", "write_timeout": "1m0s", "idle_timeout": "2m0s" } }, "ipfs_connector": { "ipfshttp": { "proxy_listen_multiaddress": "/ip4/127.0.0.1/tcp/9095", "node_multiaddress": "/ip4/127.0.0.1/tcp/5001", "connect_swarms_delay": "7s", "proxy_read_timeout": "10m0s", "proxy_read_header_timeout": "5s", "proxy_write_timeout": "10m0s", "proxy_idle_timeout": "1m0s" } }, "monitor": { "monbasic": { "check_interval": "15s" } }, "informer": { "disk": { "metric_ttl": "30s", "metric_type": "freespace" }, "numpin": { "metric_ttl": "10s" } } } ``` This new format aims to be easily extensible per component. As such, it already surfaces quite a few new options which were hardcoded before. Additionally, since Go API have changed, some redundant methods have been removed and small refactoring has happened to take advantage of the new way. License: MIT Signed-off-by: Hector Sanjuan <hector@protocol.ai>
2017-10-11 18:23:03 +00:00
"github.com/ipfs/ipfs-cluster/consensus/raft"
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
"github.com/ipfs/ipfs-cluster/datastore/badger"
"github.com/ipfs/ipfs-cluster/datastore/inmem"
2021-06-11 16:43:54 +00:00
"github.com/ipfs/ipfs-cluster/datastore/leveldb"
"github.com/ipfs/ipfs-cluster/informer/disk"
"github.com/ipfs/ipfs-cluster/ipfsconn/ipfshttp"
"github.com/ipfs/ipfs-cluster/monitor/pubsubmon"
"github.com/ipfs/ipfs-cluster/observations"
"github.com/ipfs/ipfs-cluster/pintracker/stateless"
"github.com/ipfs/ipfs-cluster/state"
"github.com/ipfs/ipfs-cluster/test"
"github.com/ipfs/ipfs-cluster/version"
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
ds "github.com/ipfs/go-datastore"
libp2p "github.com/libp2p/go-libp2p"
crypto "github.com/libp2p/go-libp2p-core/crypto"
host "github.com/libp2p/go-libp2p-core/host"
peer "github.com/libp2p/go-libp2p-core/peer"
peerstore "github.com/libp2p/go-libp2p-core/peerstore"
dht "github.com/libp2p/go-libp2p-kad-dht"
2020-04-14 20:03:24 +00:00
dual "github.com/libp2p/go-libp2p-kad-dht/dual"
pubsub "github.com/libp2p/go-libp2p-pubsub"
2020-09-02 10:06:47 +00:00
routedhost "github.com/libp2p/go-libp2p/p2p/host/routed"
ma "github.com/multiformats/go-multiaddr"
)
var (
// number of clusters to create
nClusters = 5
// number of pins to pin/unpin/check
nPins = 100
logLevel = "FATAL"
customLogLvlFacilities = logFacilities{}
consensus = "crdt"
2021-06-11 16:43:54 +00:00
datastore = "badger"
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
ttlDelayTime = 2 * time.Second // set on Main to diskInf.MetricTTL
testsFolder = "clusterTestsFolder"
// When testing with fixed ports...
// clusterPort = 10000
// apiPort = 10100
// ipfsProxyPort = 10200
)
type logFacilities []string
// String is the method to format the flag's value, part of the flag.Value interface.
func (lg *logFacilities) String() string {
return fmt.Sprint(*lg)
}
// Set is the method to set the flag value, part of the flag.Value interface.
func (lg *logFacilities) Set(value string) error {
if len(*lg) > 0 {
return errors.New("logFacilities flag already set")
}
for _, lf := range strings.Split(value, ",") {
*lg = append(*lg, lf)
}
return nil
}
2019-10-04 18:01:40 +00:00
// TestMain runs test initialization. Since Go1.13 we cannot run this on init()
// as flag.Parse() does not work well there
// (see https://golang.org/src/testing/testing.go#L211)
func TestMain(m *testing.M) {
rand.Seed(time.Now().UnixNano())
ReadyTimeout = 11 * time.Second
// GossipSub needs to heartbeat to discover newly connected hosts
// This speeds things up a little.
pubsub.GossipSubHeartbeatInterval = 50 * time.Millisecond
flag.Var(&customLogLvlFacilities, "logfacs", "use -logLevel for only the following log facilities; comma-separated")
flag.StringVar(&logLevel, "loglevel", logLevel, "default log level for tests")
flag.IntVar(&nClusters, "nclusters", nClusters, "number of clusters to use")
flag.IntVar(&nPins, "npins", nPins, "number of pins to pin/unpin/check")
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
flag.StringVar(&consensus, "consensus", consensus, "consensus implementation")
2021-06-11 16:43:54 +00:00
flag.StringVar(&datastore, "datastore", datastore, "datastore backend")
flag.Parse()
if len(customLogLvlFacilities) <= 0 {
for f := range LoggingFacilities {
SetFacilityLogLevel(f, logLevel)
}
for f := range LoggingFacilitiesExtra {
SetFacilityLogLevel(f, logLevel)
}
}
for _, f := range customLogLvlFacilities {
if _, ok := LoggingFacilities[f]; ok {
SetFacilityLogLevel(f, logLevel)
continue
}
if _, ok := LoggingFacilitiesExtra[f]; ok {
SetFacilityLogLevel(f, logLevel)
continue
}
Fix: maptracker race issues This commit attempts to fix race issues in the maptracker since the introduction of the OperationTracker. There were two main problems: * Duplicity tracking the state both in the state map and the opTracker * Non atomiciy of operations with different threads being able to affect other threads operations. A test performing random Track/Untracks on the same Cid quickly showed that items would sometimes stay as pin_queued or pin_unqueued. That happened because operations could be cancelled under the hood by a different request, while leaving the map status untouched. It was not simply to deal with this issues without a refactoring. First, the state map has been removed, and the operation tracker now provides status information for any Cid. This implies that the tracker keeps all operations and operations have a `PhaseDone`. There's also a new `OperationRemote` type. Secondly, operations are only created in the tracker and can only be removed by their creators (they can be overwritten by other operations though). Operations cannot be accessed directly and modifications are limited to setting Error for PhaseDone operations. After created, *Operations are queued in the pinWorker queues which handle any status updates. This means, that, even when an operation has been removed from the tracker, status updates will not interfere with any other newer operations. In the maptracker, only the Unpin worker Cleans operations once processed. A sucessful unpin is the only way that a delete() happens in the tracker map. Otherwise, operations stay there until a newer operation for the Cid arrives and 1) cancels the existing one 2) takes its place. The tracker refuses to create a new operation if a similar "ongoing" operation of the same type exists. The final change is that Recover and RecoverAll() are not async and play by the same rules as Track() and Untrack(), queueing the items to be recovered. Note: for stateless pintracker, the tracker will need to Clean() operation of type OperationPin as well, and complement the Status reported by the tracker with those coming from IPFS. License: MIT Signed-off-by: Hector Sanjuan <code@hector.link>
2018-05-25 16:32:10 +00:00
}
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
diskInfCfg := &disk.Config{}
diskInfCfg.LoadJSON(testingDiskInfCfg)
ttlDelayTime = diskInfCfg.MetricTTL * 2
2019-10-04 18:01:40 +00:00
os.Exit(m.Run())
}
func randomBytes() []byte {
bs := make([]byte, 64)
for i := 0; i < len(bs); i++ {
b := byte(rand.Int())
bs[i] = b
}
return bs
}
func createComponents(
t *testing.T,
host host.Host,
pubsub *pubsub.PubSub,
2020-04-14 20:03:24 +00:00
dht *dual.DHT,
i int,
staging bool,
) (
*Config,
ds.Datastore,
Consensus,
[]API,
IPFSConnector,
PinTracker,
PeerMonitor,
PinAllocator,
Informer,
Tracer,
*test.IpfsMock,
) {
ctx := context.Background()
mock := test.NewIpfsMock(t)
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
//apiAddr, _ := ma.NewMultiaddr(fmt.Sprintf("/ip4/127.0.0.1/tcp/%d", apiPort+i))
// Bind on port 0
apiAddr, _ := ma.NewMultiaddr("/ip4/127.0.0.1/tcp/0")
// Bind on Port 0
// proxyAddr, _ := ma.NewMultiaddr(fmt.Sprintf("/ip4/127.0.0.1/tcp/%d", ipfsProxyPort+i))
proxyAddr, _ := ma.NewMultiaddr("/ip4/127.0.0.1/tcp/0")
nodeAddr, _ := ma.NewMultiaddr(fmt.Sprintf("/ip4/%s/tcp/%d", mock.Addr, mock.Port))
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
peername := fmt.Sprintf("peer_%d", i)
ident, clusterCfg, apiCfg, ipfsproxyCfg, ipfshttpCfg, badgerCfg, levelDBCfg, raftCfg, crdtCfg, statelesstrackerCfg, psmonCfg, allocBalancedCfg, diskInfCfg, tracingCfg := testingConfigs()
Issue #162: Rework configuration format The following commit reimplements ipfs-cluster configuration under the following premises: * Each component is initialized with a configuration object defined by its module * Each component decides how the JSON representation of its configuration looks like * Each component parses and validates its own configuration * Each component exposes its own defaults * Component configurations are make the sections of a central JSON configuration file (which replaces the current JSON format) * Component configurations implement a common interface (config.ComponentConfig) with a set of common operations * The central configuration file is managed by a config.ConfigManager which: * Registers ComponentConfigs * Assigns the correspondent sections from the JSON file to each component and delegates the parsing * Delegates the JSON generation for each section * Can be notified when the configuration is updated and must be saved to disk The new service.json would then look as follows: ```json { "cluster": { "id": "QmTVW8NoRxC5wBhV7WtAYtRn7itipEESfozWN5KmXUQnk2", "private_key": "<...>", "secret": "00224102ae6aaf94f2606abf69a0e278251ecc1d64815b617ff19d6d2841f786", "peers": [], "bootstrap": [], "leave_on_shutdown": false, "listen_multiaddress": "/ip4/0.0.0.0/tcp/9096", "state_sync_interval": "1m0s", "ipfs_sync_interval": "2m10s", "replication_factor": -1, "monitor_ping_interval": "15s" }, "consensus": { "raft": { "heartbeat_timeout": "1s", "election_timeout": "1s", "commit_timeout": "50ms", "max_append_entries": 64, "trailing_logs": 10240, "snapshot_interval": "2m0s", "snapshot_threshold": 8192, "leader_lease_timeout": "500ms" } }, "api": { "restapi": { "listen_multiaddress": "/ip4/127.0.0.1/tcp/9094", "read_timeout": "30s", "read_header_timeout": "5s", "write_timeout": "1m0s", "idle_timeout": "2m0s" } }, "ipfs_connector": { "ipfshttp": { "proxy_listen_multiaddress": "/ip4/127.0.0.1/tcp/9095", "node_multiaddress": "/ip4/127.0.0.1/tcp/5001", "connect_swarms_delay": "7s", "proxy_read_timeout": "10m0s", "proxy_read_header_timeout": "5s", "proxy_write_timeout": "10m0s", "proxy_idle_timeout": "1m0s" } }, "monitor": { "monbasic": { "check_interval": "15s" } }, "informer": { "disk": { "metric_ttl": "30s", "metric_type": "freespace" }, "numpin": { "metric_ttl": "10s" } } } ``` This new format aims to be easily extensible per component. As such, it already surfaces quite a few new options which were hardcoded before. Additionally, since Go API have changed, some redundant methods have been removed and small refactoring has happened to take advantage of the new way. License: MIT Signed-off-by: Hector Sanjuan <hector@protocol.ai>
2017-10-11 18:23:03 +00:00
ident.ID = host.ID()
ident.PrivateKey = host.Peerstore().PrivKey(host.ID())
clusterCfg.Peername = peername
Issue #162: Rework configuration format The following commit reimplements ipfs-cluster configuration under the following premises: * Each component is initialized with a configuration object defined by its module * Each component decides how the JSON representation of its configuration looks like * Each component parses and validates its own configuration * Each component exposes its own defaults * Component configurations are make the sections of a central JSON configuration file (which replaces the current JSON format) * Component configurations implement a common interface (config.ComponentConfig) with a set of common operations * The central configuration file is managed by a config.ConfigManager which: * Registers ComponentConfigs * Assigns the correspondent sections from the JSON file to each component and delegates the parsing * Delegates the JSON generation for each section * Can be notified when the configuration is updated and must be saved to disk The new service.json would then look as follows: ```json { "cluster": { "id": "QmTVW8NoRxC5wBhV7WtAYtRn7itipEESfozWN5KmXUQnk2", "private_key": "<...>", "secret": "00224102ae6aaf94f2606abf69a0e278251ecc1d64815b617ff19d6d2841f786", "peers": [], "bootstrap": [], "leave_on_shutdown": false, "listen_multiaddress": "/ip4/0.0.0.0/tcp/9096", "state_sync_interval": "1m0s", "ipfs_sync_interval": "2m10s", "replication_factor": -1, "monitor_ping_interval": "15s" }, "consensus": { "raft": { "heartbeat_timeout": "1s", "election_timeout": "1s", "commit_timeout": "50ms", "max_append_entries": 64, "trailing_logs": 10240, "snapshot_interval": "2m0s", "snapshot_threshold": 8192, "leader_lease_timeout": "500ms" } }, "api": { "restapi": { "listen_multiaddress": "/ip4/127.0.0.1/tcp/9094", "read_timeout": "30s", "read_header_timeout": "5s", "write_timeout": "1m0s", "idle_timeout": "2m0s" } }, "ipfs_connector": { "ipfshttp": { "proxy_listen_multiaddress": "/ip4/127.0.0.1/tcp/9095", "node_multiaddress": "/ip4/127.0.0.1/tcp/5001", "connect_swarms_delay": "7s", "proxy_read_timeout": "10m0s", "proxy_read_header_timeout": "5s", "proxy_write_timeout": "10m0s", "proxy_idle_timeout": "1m0s" } }, "monitor": { "monbasic": { "check_interval": "15s" } }, "informer": { "disk": { "metric_ttl": "30s", "metric_type": "freespace" }, "numpin": { "metric_ttl": "10s" } } } ``` This new format aims to be easily extensible per component. As such, it already surfaces quite a few new options which were hardcoded before. Additionally, since Go API have changed, some redundant methods have been removed and small refactoring has happened to take advantage of the new way. License: MIT Signed-off-by: Hector Sanjuan <hector@protocol.ai>
2017-10-11 18:23:03 +00:00
clusterCfg.LeaveOnShutdown = false
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
clusterCfg.SetBaseDir(filepath.Join(testsFolder, host.ID().Pretty()))
Feat: emancipate Consensus from the Cluster component This commit promotes the Consensus component (and Raft) to become a fully independent thing like other components, passed to NewCluster during initialization. Cluster (main component) no longer creates the consensus layer internally. This has triggered a number of breaking changes that I will explain below. Motivation: Future work will require the possibility of running Cluster with a consensus layer that is not Raft. The "consensus" layer is in charge of maintaining two things: * The current cluster peerset, as required by the implementation * The current cluster pinset (shared state) While the pinset maintenance has always been in the consensus layer, the peerset maintenance was handled by the main component (starting by the "peers" key in the configuration) AND the Raft component (internally) and this generated lots of confusion: if the user edited the peers in the configuration they would be greeted with an error. The bootstrap process (adding a peer to an existing cluster) and configuration key also complicated many things, since the main component did it, but only when the consensus was initialized and in single peer mode. In all this we also mixed the peerstore (list of peer addresses in the libp2p host) with the peerset, when they need not to be linked. By initializing the consensus layer before calling NewCluster, all the difficulties in maintaining the current implementation in the same way have come to light. Thus, the following changes have been introduced: * Remove "peers" and "bootstrap" keys from the configuration: we no longer edit or save the configuration files. This was a very bad practice, requiring write permissions by the process to the file containing the private key and additionally made things like Puppet deployments of cluster difficult as configuration would mutate from its initial version. Needless to say all the maintenance associated to making sure peers and bootstrap had correct values when peers are bootstrapped or removed. A loud and detailed error message has been added when staring cluster with an old config, along with instructions on how to move forward. * Introduce a PeerstoreFile ("peerstore") which stores peer addresses: in ipfs, the peerstore is not persisted because it can be re-built from the network bootstrappers and the DHT. Cluster should probably also allow discoverability of peers addresses (when not bootstrapping, as in that case we have it), but in the meantime, we will read and persist the peerstore addresses for cluster peers in this file, different from the configuration. Note that dns multiaddresses are now fully supported and no IPs are saved when we have DNS multiaddresses for a peer. * The former "peer_manager" code is now a pstoremgr module, providing utilities to parse, add, list and generally maintain the libp2p host peerstore, including operations on the PeerstoreFile. This "pstoremgr" can now also be extended to perform address autodiscovery and other things indepedently from Cluster. * Create and initialize Raft outside of the main Cluster component: since we can now launch Raft independently from Cluster, we have more degrees of freedom. A new "staging" option when creating the object allows a raft peer to be launched in Staging mode, waiting to be added to a running consensus, and thus, not electing itself as leader or doing anything like we were doing before. This additionally allows us to track when the peer has become a Voter, which only happens when it's caught up with the state, something that was wonky previously. * The raft configuration now includes an InitPeerset key, which allows to provide a peerset for new peers and which is ignored when staging==true. The whole Raft initialization code is way cleaner and stronger now. * Cluster peer bootsrapping is now an ipfs-cluster-service feature. The --bootstrap flag works as before (additionally allowing comma-separated-list of entries). What bootstrap does, is to initialize Raft with staging == true, and then call Join in the main cluster component. Only when the Raft peer transitions to Voter, consensus becomes ready, and cluster becomes Ready. This is cleaner, works better and is less complex than before (supporting both flags and config values). We also backup and clean the state whenever we are boostrapping, automatically * ipfs-cluster-service no longer runs the daemon. Starting cluster needs now "ipfs-cluster-service daemon". The daemon specific flags (bootstrap, alloc) are now flags for the daemon subcommand. Here we mimic ipfs ("ipfs" does not start the daemon but print help) and pave the path for merging both service and ctl in the future. While this brings some breaking changes, it significantly reduces the complexity of the configuration, the code and most importantly, the documentation. It should be easier now to explain the user what is the right way to launch a cluster peer, and more difficult to make mistakes. As a side effect, the PR also: * Fixes #381 - peers with dynamic addresses * Fixes #371 - peers should be Raft configuration option * Fixes #378 - waitForUpdates may return before state fully synced * Fixes #235 - config option shadowing (no cfg saves, no need to shadow) License: MIT Signed-off-by: Hector Sanjuan <code@hector.link>
2018-04-28 22:22:23 +00:00
apiCfg.HTTPListenAddr = []ma.Multiaddr{apiAddr}
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
ipfsproxyCfg.ListenAddr = []ma.Multiaddr{proxyAddr}
ipfsproxyCfg.NodeAddr = nodeAddr
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
Issue #162: Rework configuration format The following commit reimplements ipfs-cluster configuration under the following premises: * Each component is initialized with a configuration object defined by its module * Each component decides how the JSON representation of its configuration looks like * Each component parses and validates its own configuration * Each component exposes its own defaults * Component configurations are make the sections of a central JSON configuration file (which replaces the current JSON format) * Component configurations implement a common interface (config.ComponentConfig) with a set of common operations * The central configuration file is managed by a config.ConfigManager which: * Registers ComponentConfigs * Assigns the correspondent sections from the JSON file to each component and delegates the parsing * Delegates the JSON generation for each section * Can be notified when the configuration is updated and must be saved to disk The new service.json would then look as follows: ```json { "cluster": { "id": "QmTVW8NoRxC5wBhV7WtAYtRn7itipEESfozWN5KmXUQnk2", "private_key": "<...>", "secret": "00224102ae6aaf94f2606abf69a0e278251ecc1d64815b617ff19d6d2841f786", "peers": [], "bootstrap": [], "leave_on_shutdown": false, "listen_multiaddress": "/ip4/0.0.0.0/tcp/9096", "state_sync_interval": "1m0s", "ipfs_sync_interval": "2m10s", "replication_factor": -1, "monitor_ping_interval": "15s" }, "consensus": { "raft": { "heartbeat_timeout": "1s", "election_timeout": "1s", "commit_timeout": "50ms", "max_append_entries": 64, "trailing_logs": 10240, "snapshot_interval": "2m0s", "snapshot_threshold": 8192, "leader_lease_timeout": "500ms" } }, "api": { "restapi": { "listen_multiaddress": "/ip4/127.0.0.1/tcp/9094", "read_timeout": "30s", "read_header_timeout": "5s", "write_timeout": "1m0s", "idle_timeout": "2m0s" } }, "ipfs_connector": { "ipfshttp": { "proxy_listen_multiaddress": "/ip4/127.0.0.1/tcp/9095", "node_multiaddress": "/ip4/127.0.0.1/tcp/5001", "connect_swarms_delay": "7s", "proxy_read_timeout": "10m0s", "proxy_read_header_timeout": "5s", "proxy_write_timeout": "10m0s", "proxy_idle_timeout": "1m0s" } }, "monitor": { "monbasic": { "check_interval": "15s" } }, "informer": { "disk": { "metric_ttl": "30s", "metric_type": "freespace" }, "numpin": { "metric_ttl": "10s" } } } ``` This new format aims to be easily extensible per component. As such, it already surfaces quite a few new options which were hardcoded before. Additionally, since Go API have changed, some redundant methods have been removed and small refactoring has happened to take advantage of the new way. License: MIT Signed-off-by: Hector Sanjuan <hector@protocol.ai>
2017-10-11 18:23:03 +00:00
ipfshttpCfg.NodeAddr = nodeAddr
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
raftCfg.DataFolder = filepath.Join(testsFolder, host.ID().Pretty())
badgerCfg.Folder = filepath.Join(testsFolder, host.ID().Pretty(), "badger")
2021-06-11 16:43:54 +00:00
levelDBCfg.Folder = filepath.Join(testsFolder, host.ID().Pretty(), "leveldb")
Issue #162: Rework configuration format The following commit reimplements ipfs-cluster configuration under the following premises: * Each component is initialized with a configuration object defined by its module * Each component decides how the JSON representation of its configuration looks like * Each component parses and validates its own configuration * Each component exposes its own defaults * Component configurations are make the sections of a central JSON configuration file (which replaces the current JSON format) * Component configurations implement a common interface (config.ComponentConfig) with a set of common operations * The central configuration file is managed by a config.ConfigManager which: * Registers ComponentConfigs * Assigns the correspondent sections from the JSON file to each component and delegates the parsing * Delegates the JSON generation for each section * Can be notified when the configuration is updated and must be saved to disk The new service.json would then look as follows: ```json { "cluster": { "id": "QmTVW8NoRxC5wBhV7WtAYtRn7itipEESfozWN5KmXUQnk2", "private_key": "<...>", "secret": "00224102ae6aaf94f2606abf69a0e278251ecc1d64815b617ff19d6d2841f786", "peers": [], "bootstrap": [], "leave_on_shutdown": false, "listen_multiaddress": "/ip4/0.0.0.0/tcp/9096", "state_sync_interval": "1m0s", "ipfs_sync_interval": "2m10s", "replication_factor": -1, "monitor_ping_interval": "15s" }, "consensus": { "raft": { "heartbeat_timeout": "1s", "election_timeout": "1s", "commit_timeout": "50ms", "max_append_entries": 64, "trailing_logs": 10240, "snapshot_interval": "2m0s", "snapshot_threshold": 8192, "leader_lease_timeout": "500ms" } }, "api": { "restapi": { "listen_multiaddress": "/ip4/127.0.0.1/tcp/9094", "read_timeout": "30s", "read_header_timeout": "5s", "write_timeout": "1m0s", "idle_timeout": "2m0s" } }, "ipfs_connector": { "ipfshttp": { "proxy_listen_multiaddress": "/ip4/127.0.0.1/tcp/9095", "node_multiaddress": "/ip4/127.0.0.1/tcp/5001", "connect_swarms_delay": "7s", "proxy_read_timeout": "10m0s", "proxy_read_header_timeout": "5s", "proxy_write_timeout": "10m0s", "proxy_idle_timeout": "1m0s" } }, "monitor": { "monbasic": { "check_interval": "15s" } }, "informer": { "disk": { "metric_ttl": "30s", "metric_type": "freespace" }, "numpin": { "metric_ttl": "10s" } } } ``` This new format aims to be easily extensible per component. As such, it already surfaces quite a few new options which were hardcoded before. Additionally, since Go API have changed, some redundant methods have been removed and small refactoring has happened to take advantage of the new way. License: MIT Signed-off-by: Hector Sanjuan <hector@protocol.ai>
2017-10-11 18:23:03 +00:00
api, err := rest.NewAPI(ctx, apiCfg)
if err != nil {
t.Fatal(err)
}
ipfsProxy, err := rest.NewAPI(ctx, apiCfg)
if err != nil {
t.Fatal(err)
}
Issue #162: Rework configuration format The following commit reimplements ipfs-cluster configuration under the following premises: * Each component is initialized with a configuration object defined by its module * Each component decides how the JSON representation of its configuration looks like * Each component parses and validates its own configuration * Each component exposes its own defaults * Component configurations are make the sections of a central JSON configuration file (which replaces the current JSON format) * Component configurations implement a common interface (config.ComponentConfig) with a set of common operations * The central configuration file is managed by a config.ConfigManager which: * Registers ComponentConfigs * Assigns the correspondent sections from the JSON file to each component and delegates the parsing * Delegates the JSON generation for each section * Can be notified when the configuration is updated and must be saved to disk The new service.json would then look as follows: ```json { "cluster": { "id": "QmTVW8NoRxC5wBhV7WtAYtRn7itipEESfozWN5KmXUQnk2", "private_key": "<...>", "secret": "00224102ae6aaf94f2606abf69a0e278251ecc1d64815b617ff19d6d2841f786", "peers": [], "bootstrap": [], "leave_on_shutdown": false, "listen_multiaddress": "/ip4/0.0.0.0/tcp/9096", "state_sync_interval": "1m0s", "ipfs_sync_interval": "2m10s", "replication_factor": -1, "monitor_ping_interval": "15s" }, "consensus": { "raft": { "heartbeat_timeout": "1s", "election_timeout": "1s", "commit_timeout": "50ms", "max_append_entries": 64, "trailing_logs": 10240, "snapshot_interval": "2m0s", "snapshot_threshold": 8192, "leader_lease_timeout": "500ms" } }, "api": { "restapi": { "listen_multiaddress": "/ip4/127.0.0.1/tcp/9094", "read_timeout": "30s", "read_header_timeout": "5s", "write_timeout": "1m0s", "idle_timeout": "2m0s" } }, "ipfs_connector": { "ipfshttp": { "proxy_listen_multiaddress": "/ip4/127.0.0.1/tcp/9095", "node_multiaddress": "/ip4/127.0.0.1/tcp/5001", "connect_swarms_delay": "7s", "proxy_read_timeout": "10m0s", "proxy_read_header_timeout": "5s", "proxy_write_timeout": "10m0s", "proxy_idle_timeout": "1m0s" } }, "monitor": { "monbasic": { "check_interval": "15s" } }, "informer": { "disk": { "metric_ttl": "30s", "metric_type": "freespace" }, "numpin": { "metric_ttl": "10s" } } } ``` This new format aims to be easily extensible per component. As such, it already surfaces quite a few new options which were hardcoded before. Additionally, since Go API have changed, some redundant methods have been removed and small refactoring has happened to take advantage of the new way. License: MIT Signed-off-by: Hector Sanjuan <hector@protocol.ai>
2017-10-11 18:23:03 +00:00
ipfs, err := ipfshttp.NewConnector(ipfshttpCfg)
if err != nil {
t.Fatal(err)
}
alloc, err := balanced.New(allocBalancedCfg)
if err != nil {
t.Fatal(err)
}
Issue #162: Rework configuration format The following commit reimplements ipfs-cluster configuration under the following premises: * Each component is initialized with a configuration object defined by its module * Each component decides how the JSON representation of its configuration looks like * Each component parses and validates its own configuration * Each component exposes its own defaults * Component configurations are make the sections of a central JSON configuration file (which replaces the current JSON format) * Component configurations implement a common interface (config.ComponentConfig) with a set of common operations * The central configuration file is managed by a config.ConfigManager which: * Registers ComponentConfigs * Assigns the correspondent sections from the JSON file to each component and delegates the parsing * Delegates the JSON generation for each section * Can be notified when the configuration is updated and must be saved to disk The new service.json would then look as follows: ```json { "cluster": { "id": "QmTVW8NoRxC5wBhV7WtAYtRn7itipEESfozWN5KmXUQnk2", "private_key": "<...>", "secret": "00224102ae6aaf94f2606abf69a0e278251ecc1d64815b617ff19d6d2841f786", "peers": [], "bootstrap": [], "leave_on_shutdown": false, "listen_multiaddress": "/ip4/0.0.0.0/tcp/9096", "state_sync_interval": "1m0s", "ipfs_sync_interval": "2m10s", "replication_factor": -1, "monitor_ping_interval": "15s" }, "consensus": { "raft": { "heartbeat_timeout": "1s", "election_timeout": "1s", "commit_timeout": "50ms", "max_append_entries": 64, "trailing_logs": 10240, "snapshot_interval": "2m0s", "snapshot_threshold": 8192, "leader_lease_timeout": "500ms" } }, "api": { "restapi": { "listen_multiaddress": "/ip4/127.0.0.1/tcp/9094", "read_timeout": "30s", "read_header_timeout": "5s", "write_timeout": "1m0s", "idle_timeout": "2m0s" } }, "ipfs_connector": { "ipfshttp": { "proxy_listen_multiaddress": "/ip4/127.0.0.1/tcp/9095", "node_multiaddress": "/ip4/127.0.0.1/tcp/5001", "connect_swarms_delay": "7s", "proxy_read_timeout": "10m0s", "proxy_read_header_timeout": "5s", "proxy_write_timeout": "10m0s", "proxy_idle_timeout": "1m0s" } }, "monitor": { "monbasic": { "check_interval": "15s" } }, "informer": { "disk": { "metric_ttl": "30s", "metric_type": "freespace" }, "numpin": { "metric_ttl": "10s" } } } ``` This new format aims to be easily extensible per component. As such, it already surfaces quite a few new options which were hardcoded before. Additionally, since Go API have changed, some redundant methods have been removed and small refactoring has happened to take advantage of the new way. License: MIT Signed-off-by: Hector Sanjuan <hector@protocol.ai>
2017-10-11 18:23:03 +00:00
inf, err := disk.NewInformer(diskInfCfg)
if err != nil {
t.Fatal(err)
}
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
2021-06-11 16:43:54 +00:00
store := makeStore(t, badgerCfg, levelDBCfg)
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
cons := makeConsensus(t, store, host, pubsub, dht, raftCfg, staging, crdtCfg)
tracker := stateless.New(statelesstrackerCfg, ident.ID, clusterCfg.Peername, cons.State)
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
var peersF func(context.Context) ([]peer.ID, error)
if consensus == "raft" {
peersF = cons.Peers
}
mon, err := pubsubmon.New(ctx, psmonCfg, pubsub, peersF)
if err != nil {
t.Fatal(err)
}
tracingCfg.ServiceName = peername
tracer, err := observations.SetupTracing(tracingCfg)
if err != nil {
t.Fatal(err)
}
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
return clusterCfg, store, cons, []API{api, ipfsProxy}, ipfs, tracker, mon, alloc, inf, tracer, mock
}
2021-06-11 16:43:54 +00:00
func makeStore(t *testing.T, badgerCfg *badger.Config, levelDBCfg *leveldb.Config) ds.Datastore {
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
switch consensus {
case "crdt":
2021-06-11 16:43:54 +00:00
if datastore == "badger" {
dstr, err := badger.New(badgerCfg)
if err != nil {
t.Fatal(err)
}
return dstr
}
dstr, err := leveldb.New(levelDBCfg)
if err != nil {
t.Fatal(err)
}
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
return dstr
default:
return inmem.New()
}
}
2020-04-14 20:03:24 +00:00
func makeConsensus(t *testing.T, store ds.Datastore, h host.Host, psub *pubsub.PubSub, dht *dual.DHT, raftCfg *raft.Config, staging bool, crdtCfg *crdt.Config) Consensus {
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
switch consensus {
case "raft":
raftCon, err := raft.NewConsensus(h, raftCfg, store, staging)
if err != nil {
t.Fatal(err)
}
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
return raftCon
case "crdt":
crdtCon, err := crdt.New(h, dht, psub, crdtCfg, store)
if err != nil {
t.Fatal(err)
}
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
return crdtCon
default:
panic("bad consensus")
}
}
2020-04-14 20:03:24 +00:00
func createCluster(t *testing.T, host host.Host, dht *dual.DHT, clusterCfg *Config, store ds.Datastore, consensus Consensus, apis []API, ipfs IPFSConnector, tracker PinTracker, mon PeerMonitor, alloc PinAllocator, inf Informer, tracer Tracer) *Cluster {
cl, err := NewCluster(context.Background(), host, dht, clusterCfg, store, consensus, apis, ipfs, tracker, mon, alloc, []Informer{inf}, tracer)
if err != nil {
t.Fatal(err)
}
return cl
}
func createOnePeerCluster(t *testing.T, nth int, clusterSecret []byte) (*Cluster, *test.IpfsMock) {
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
hosts, pubsubs, dhts := createHosts(t, clusterSecret, 1)
clusterCfg, store, consensus, api, ipfs, tracker, mon, alloc, inf, tracer, mock := createComponents(t, hosts[0], pubsubs[0], dhts[0], nth, false)
cl := createCluster(t, hosts[0], dhts[0], clusterCfg, store, consensus, api, ipfs, tracker, mon, alloc, inf, tracer)
Feat: emancipate Consensus from the Cluster component This commit promotes the Consensus component (and Raft) to become a fully independent thing like other components, passed to NewCluster during initialization. Cluster (main component) no longer creates the consensus layer internally. This has triggered a number of breaking changes that I will explain below. Motivation: Future work will require the possibility of running Cluster with a consensus layer that is not Raft. The "consensus" layer is in charge of maintaining two things: * The current cluster peerset, as required by the implementation * The current cluster pinset (shared state) While the pinset maintenance has always been in the consensus layer, the peerset maintenance was handled by the main component (starting by the "peers" key in the configuration) AND the Raft component (internally) and this generated lots of confusion: if the user edited the peers in the configuration they would be greeted with an error. The bootstrap process (adding a peer to an existing cluster) and configuration key also complicated many things, since the main component did it, but only when the consensus was initialized and in single peer mode. In all this we also mixed the peerstore (list of peer addresses in the libp2p host) with the peerset, when they need not to be linked. By initializing the consensus layer before calling NewCluster, all the difficulties in maintaining the current implementation in the same way have come to light. Thus, the following changes have been introduced: * Remove "peers" and "bootstrap" keys from the configuration: we no longer edit or save the configuration files. This was a very bad practice, requiring write permissions by the process to the file containing the private key and additionally made things like Puppet deployments of cluster difficult as configuration would mutate from its initial version. Needless to say all the maintenance associated to making sure peers and bootstrap had correct values when peers are bootstrapped or removed. A loud and detailed error message has been added when staring cluster with an old config, along with instructions on how to move forward. * Introduce a PeerstoreFile ("peerstore") which stores peer addresses: in ipfs, the peerstore is not persisted because it can be re-built from the network bootstrappers and the DHT. Cluster should probably also allow discoverability of peers addresses (when not bootstrapping, as in that case we have it), but in the meantime, we will read and persist the peerstore addresses for cluster peers in this file, different from the configuration. Note that dns multiaddresses are now fully supported and no IPs are saved when we have DNS multiaddresses for a peer. * The former "peer_manager" code is now a pstoremgr module, providing utilities to parse, add, list and generally maintain the libp2p host peerstore, including operations on the PeerstoreFile. This "pstoremgr" can now also be extended to perform address autodiscovery and other things indepedently from Cluster. * Create and initialize Raft outside of the main Cluster component: since we can now launch Raft independently from Cluster, we have more degrees of freedom. A new "staging" option when creating the object allows a raft peer to be launched in Staging mode, waiting to be added to a running consensus, and thus, not electing itself as leader or doing anything like we were doing before. This additionally allows us to track when the peer has become a Voter, which only happens when it's caught up with the state, something that was wonky previously. * The raft configuration now includes an InitPeerset key, which allows to provide a peerset for new peers and which is ignored when staging==true. The whole Raft initialization code is way cleaner and stronger now. * Cluster peer bootsrapping is now an ipfs-cluster-service feature. The --bootstrap flag works as before (additionally allowing comma-separated-list of entries). What bootstrap does, is to initialize Raft with staging == true, and then call Join in the main cluster component. Only when the Raft peer transitions to Voter, consensus becomes ready, and cluster becomes Ready. This is cleaner, works better and is less complex than before (supporting both flags and config values). We also backup and clean the state whenever we are boostrapping, automatically * ipfs-cluster-service no longer runs the daemon. Starting cluster needs now "ipfs-cluster-service daemon". The daemon specific flags (bootstrap, alloc) are now flags for the daemon subcommand. Here we mimic ipfs ("ipfs" does not start the daemon but print help) and pave the path for merging both service and ctl in the future. While this brings some breaking changes, it significantly reduces the complexity of the configuration, the code and most importantly, the documentation. It should be easier now to explain the user what is the right way to launch a cluster peer, and more difficult to make mistakes. As a side effect, the PR also: * Fixes #381 - peers with dynamic addresses * Fixes #371 - peers should be Raft configuration option * Fixes #378 - waitForUpdates may return before state fully synced * Fixes #235 - config option shadowing (no cfg saves, no need to shadow) License: MIT Signed-off-by: Hector Sanjuan <code@hector.link>
2018-04-28 22:22:23 +00:00
<-cl.Ready()
return cl, mock
}
2020-04-14 20:03:24 +00:00
func createHosts(t *testing.T, clusterSecret []byte, nClusters int) ([]host.Host, []*pubsub.PubSub, []*dual.DHT) {
hosts := make([]host.Host, nClusters)
pubsubs := make([]*pubsub.PubSub, nClusters)
2020-04-14 20:03:24 +00:00
dhts := make([]*dual.DHT, nClusters)
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
2019-11-03 21:42:24 +00:00
tcpaddr, _ := ma.NewMultiaddr("/ip4/127.0.0.1/tcp/0")
quicAddr, _ := ma.NewMultiaddr("/ip4/127.0.0.1/udp/0/quic")
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
for i := range hosts {
priv, _, err := crypto.GenerateKeyPair(crypto.RSA, 2048)
if err != nil {
t.Fatal(err)
}
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
h, p, d := createHost(t, priv, clusterSecret, []ma.Multiaddr{quicAddr, tcpaddr})
hosts[i] = h
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
dhts[i] = d
pubsubs[i] = p
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
}
return hosts, pubsubs, dhts
}
2020-04-14 20:03:24 +00:00
func createHost(t *testing.T, priv crypto.PrivKey, clusterSecret []byte, listen []ma.Multiaddr) (host.Host, *pubsub.PubSub, *dual.DHT) {
ctx := context.Background()
h, err := newHost(ctx, clusterSecret, priv, libp2p.ListenAddrs(listen...))
if err != nil {
t.Fatal(err)
}
// DHT needs to be created BEFORE connecting the peers
d, err := newTestDHT(ctx, h)
if err != nil {
t.Fatal(err)
}
// Pubsub needs to be created BEFORE connecting the peers,
// otherwise they are not picked up.
psub, err := newPubSub(ctx, h)
if err != nil {
t.Fatal(err)
}
2020-09-02 10:06:47 +00:00
return routedhost.Wrap(h, d), psub, d
}
2020-04-14 20:03:24 +00:00
func newTestDHT(ctx context.Context, h host.Host) (*dual.DHT, error) {
return newDHT(ctx, h, nil,
2020-09-02 10:06:47 +00:00
dual.DHTOption(dht.RoutingTableRefreshPeriod(600*time.Millisecond)),
dual.DHTOption(dht.RoutingTableRefreshQueryTimeout(300*time.Millisecond)),
)
}
func createClusters(t *testing.T) ([]*Cluster, []*test.IpfsMock) {
ctx := context.Background()
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
os.RemoveAll(testsFolder)
cfgs := make([]*Config, nClusters)
stores := make([]ds.Datastore, nClusters)
cons := make([]Consensus, nClusters)
apis := make([][]API, nClusters)
ipfss := make([]IPFSConnector, nClusters)
trackers := make([]PinTracker, nClusters)
mons := make([]PeerMonitor, nClusters)
allocs := make([]PinAllocator, nClusters)
infs := make([]Informer, nClusters)
tracers := make([]Tracer, nClusters)
ipfsMocks := make([]*test.IpfsMock, nClusters)
clusters := make([]*Cluster, nClusters)
// Uncomment when testing with fixed ports
// clusterPeers := make([]ma.Multiaddr, nClusters, nClusters)
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
hosts, pubsubs, dhts := createHosts(t, testingClusterSecret, nClusters)
for i := 0; i < nClusters; i++ {
Feat: emancipate Consensus from the Cluster component This commit promotes the Consensus component (and Raft) to become a fully independent thing like other components, passed to NewCluster during initialization. Cluster (main component) no longer creates the consensus layer internally. This has triggered a number of breaking changes that I will explain below. Motivation: Future work will require the possibility of running Cluster with a consensus layer that is not Raft. The "consensus" layer is in charge of maintaining two things: * The current cluster peerset, as required by the implementation * The current cluster pinset (shared state) While the pinset maintenance has always been in the consensus layer, the peerset maintenance was handled by the main component (starting by the "peers" key in the configuration) AND the Raft component (internally) and this generated lots of confusion: if the user edited the peers in the configuration they would be greeted with an error. The bootstrap process (adding a peer to an existing cluster) and configuration key also complicated many things, since the main component did it, but only when the consensus was initialized and in single peer mode. In all this we also mixed the peerstore (list of peer addresses in the libp2p host) with the peerset, when they need not to be linked. By initializing the consensus layer before calling NewCluster, all the difficulties in maintaining the current implementation in the same way have come to light. Thus, the following changes have been introduced: * Remove "peers" and "bootstrap" keys from the configuration: we no longer edit or save the configuration files. This was a very bad practice, requiring write permissions by the process to the file containing the private key and additionally made things like Puppet deployments of cluster difficult as configuration would mutate from its initial version. Needless to say all the maintenance associated to making sure peers and bootstrap had correct values when peers are bootstrapped or removed. A loud and detailed error message has been added when staring cluster with an old config, along with instructions on how to move forward. * Introduce a PeerstoreFile ("peerstore") which stores peer addresses: in ipfs, the peerstore is not persisted because it can be re-built from the network bootstrappers and the DHT. Cluster should probably also allow discoverability of peers addresses (when not bootstrapping, as in that case we have it), but in the meantime, we will read and persist the peerstore addresses for cluster peers in this file, different from the configuration. Note that dns multiaddresses are now fully supported and no IPs are saved when we have DNS multiaddresses for a peer. * The former "peer_manager" code is now a pstoremgr module, providing utilities to parse, add, list and generally maintain the libp2p host peerstore, including operations on the PeerstoreFile. This "pstoremgr" can now also be extended to perform address autodiscovery and other things indepedently from Cluster. * Create and initialize Raft outside of the main Cluster component: since we can now launch Raft independently from Cluster, we have more degrees of freedom. A new "staging" option when creating the object allows a raft peer to be launched in Staging mode, waiting to be added to a running consensus, and thus, not electing itself as leader or doing anything like we were doing before. This additionally allows us to track when the peer has become a Voter, which only happens when it's caught up with the state, something that was wonky previously. * The raft configuration now includes an InitPeerset key, which allows to provide a peerset for new peers and which is ignored when staging==true. The whole Raft initialization code is way cleaner and stronger now. * Cluster peer bootsrapping is now an ipfs-cluster-service feature. The --bootstrap flag works as before (additionally allowing comma-separated-list of entries). What bootstrap does, is to initialize Raft with staging == true, and then call Join in the main cluster component. Only when the Raft peer transitions to Voter, consensus becomes ready, and cluster becomes Ready. This is cleaner, works better and is less complex than before (supporting both flags and config values). We also backup and clean the state whenever we are boostrapping, automatically * ipfs-cluster-service no longer runs the daemon. Starting cluster needs now "ipfs-cluster-service daemon". The daemon specific flags (bootstrap, alloc) are now flags for the daemon subcommand. Here we mimic ipfs ("ipfs" does not start the daemon but print help) and pave the path for merging both service and ctl in the future. While this brings some breaking changes, it significantly reduces the complexity of the configuration, the code and most importantly, the documentation. It should be easier now to explain the user what is the right way to launch a cluster peer, and more difficult to make mistakes. As a side effect, the PR also: * Fixes #381 - peers with dynamic addresses * Fixes #371 - peers should be Raft configuration option * Fixes #378 - waitForUpdates may return before state fully synced * Fixes #235 - config option shadowing (no cfg saves, no need to shadow) License: MIT Signed-off-by: Hector Sanjuan <code@hector.link>
2018-04-28 22:22:23 +00:00
// staging = true for all except first (i==0)
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
cfgs[i], stores[i], cons[i], apis[i], ipfss[i], trackers[i], mons[i], allocs[i], infs[i], tracers[i], ipfsMocks[i] = createComponents(t, hosts[i], pubsubs[i], dhts[i], i, i != 0)
}
// Start first node
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
clusters[0] = createCluster(t, hosts[0], dhts[0], cfgs[0], stores[0], cons[0], apis[0], ipfss[0], trackers[0], mons[0], allocs[0], infs[0], tracers[0])
Feat: emancipate Consensus from the Cluster component This commit promotes the Consensus component (and Raft) to become a fully independent thing like other components, passed to NewCluster during initialization. Cluster (main component) no longer creates the consensus layer internally. This has triggered a number of breaking changes that I will explain below. Motivation: Future work will require the possibility of running Cluster with a consensus layer that is not Raft. The "consensus" layer is in charge of maintaining two things: * The current cluster peerset, as required by the implementation * The current cluster pinset (shared state) While the pinset maintenance has always been in the consensus layer, the peerset maintenance was handled by the main component (starting by the "peers" key in the configuration) AND the Raft component (internally) and this generated lots of confusion: if the user edited the peers in the configuration they would be greeted with an error. The bootstrap process (adding a peer to an existing cluster) and configuration key also complicated many things, since the main component did it, but only when the consensus was initialized and in single peer mode. In all this we also mixed the peerstore (list of peer addresses in the libp2p host) with the peerset, when they need not to be linked. By initializing the consensus layer before calling NewCluster, all the difficulties in maintaining the current implementation in the same way have come to light. Thus, the following changes have been introduced: * Remove "peers" and "bootstrap" keys from the configuration: we no longer edit or save the configuration files. This was a very bad practice, requiring write permissions by the process to the file containing the private key and additionally made things like Puppet deployments of cluster difficult as configuration would mutate from its initial version. Needless to say all the maintenance associated to making sure peers and bootstrap had correct values when peers are bootstrapped or removed. A loud and detailed error message has been added when staring cluster with an old config, along with instructions on how to move forward. * Introduce a PeerstoreFile ("peerstore") which stores peer addresses: in ipfs, the peerstore is not persisted because it can be re-built from the network bootstrappers and the DHT. Cluster should probably also allow discoverability of peers addresses (when not bootstrapping, as in that case we have it), but in the meantime, we will read and persist the peerstore addresses for cluster peers in this file, different from the configuration. Note that dns multiaddresses are now fully supported and no IPs are saved when we have DNS multiaddresses for a peer. * The former "peer_manager" code is now a pstoremgr module, providing utilities to parse, add, list and generally maintain the libp2p host peerstore, including operations on the PeerstoreFile. This "pstoremgr" can now also be extended to perform address autodiscovery and other things indepedently from Cluster. * Create and initialize Raft outside of the main Cluster component: since we can now launch Raft independently from Cluster, we have more degrees of freedom. A new "staging" option when creating the object allows a raft peer to be launched in Staging mode, waiting to be added to a running consensus, and thus, not electing itself as leader or doing anything like we were doing before. This additionally allows us to track when the peer has become a Voter, which only happens when it's caught up with the state, something that was wonky previously. * The raft configuration now includes an InitPeerset key, which allows to provide a peerset for new peers and which is ignored when staging==true. The whole Raft initialization code is way cleaner and stronger now. * Cluster peer bootsrapping is now an ipfs-cluster-service feature. The --bootstrap flag works as before (additionally allowing comma-separated-list of entries). What bootstrap does, is to initialize Raft with staging == true, and then call Join in the main cluster component. Only when the Raft peer transitions to Voter, consensus becomes ready, and cluster becomes Ready. This is cleaner, works better and is less complex than before (supporting both flags and config values). We also backup and clean the state whenever we are boostrapping, automatically * ipfs-cluster-service no longer runs the daemon. Starting cluster needs now "ipfs-cluster-service daemon". The daemon specific flags (bootstrap, alloc) are now flags for the daemon subcommand. Here we mimic ipfs ("ipfs" does not start the daemon but print help) and pave the path for merging both service and ctl in the future. While this brings some breaking changes, it significantly reduces the complexity of the configuration, the code and most importantly, the documentation. It should be easier now to explain the user what is the right way to launch a cluster peer, and more difficult to make mistakes. As a side effect, the PR also: * Fixes #381 - peers with dynamic addresses * Fixes #371 - peers should be Raft configuration option * Fixes #378 - waitForUpdates may return before state fully synced * Fixes #235 - config option shadowing (no cfg saves, no need to shadow) License: MIT Signed-off-by: Hector Sanjuan <code@hector.link>
2018-04-28 22:22:23 +00:00
<-clusters[0].Ready()
bootstrapAddr := clusterAddr(clusters[0])
Feat: emancipate Consensus from the Cluster component This commit promotes the Consensus component (and Raft) to become a fully independent thing like other components, passed to NewCluster during initialization. Cluster (main component) no longer creates the consensus layer internally. This has triggered a number of breaking changes that I will explain below. Motivation: Future work will require the possibility of running Cluster with a consensus layer that is not Raft. The "consensus" layer is in charge of maintaining two things: * The current cluster peerset, as required by the implementation * The current cluster pinset (shared state) While the pinset maintenance has always been in the consensus layer, the peerset maintenance was handled by the main component (starting by the "peers" key in the configuration) AND the Raft component (internally) and this generated lots of confusion: if the user edited the peers in the configuration they would be greeted with an error. The bootstrap process (adding a peer to an existing cluster) and configuration key also complicated many things, since the main component did it, but only when the consensus was initialized and in single peer mode. In all this we also mixed the peerstore (list of peer addresses in the libp2p host) with the peerset, when they need not to be linked. By initializing the consensus layer before calling NewCluster, all the difficulties in maintaining the current implementation in the same way have come to light. Thus, the following changes have been introduced: * Remove "peers" and "bootstrap" keys from the configuration: we no longer edit or save the configuration files. This was a very bad practice, requiring write permissions by the process to the file containing the private key and additionally made things like Puppet deployments of cluster difficult as configuration would mutate from its initial version. Needless to say all the maintenance associated to making sure peers and bootstrap had correct values when peers are bootstrapped or removed. A loud and detailed error message has been added when staring cluster with an old config, along with instructions on how to move forward. * Introduce a PeerstoreFile ("peerstore") which stores peer addresses: in ipfs, the peerstore is not persisted because it can be re-built from the network bootstrappers and the DHT. Cluster should probably also allow discoverability of peers addresses (when not bootstrapping, as in that case we have it), but in the meantime, we will read and persist the peerstore addresses for cluster peers in this file, different from the configuration. Note that dns multiaddresses are now fully supported and no IPs are saved when we have DNS multiaddresses for a peer. * The former "peer_manager" code is now a pstoremgr module, providing utilities to parse, add, list and generally maintain the libp2p host peerstore, including operations on the PeerstoreFile. This "pstoremgr" can now also be extended to perform address autodiscovery and other things indepedently from Cluster. * Create and initialize Raft outside of the main Cluster component: since we can now launch Raft independently from Cluster, we have more degrees of freedom. A new "staging" option when creating the object allows a raft peer to be launched in Staging mode, waiting to be added to a running consensus, and thus, not electing itself as leader or doing anything like we were doing before. This additionally allows us to track when the peer has become a Voter, which only happens when it's caught up with the state, something that was wonky previously. * The raft configuration now includes an InitPeerset key, which allows to provide a peerset for new peers and which is ignored when staging==true. The whole Raft initialization code is way cleaner and stronger now. * Cluster peer bootsrapping is now an ipfs-cluster-service feature. The --bootstrap flag works as before (additionally allowing comma-separated-list of entries). What bootstrap does, is to initialize Raft with staging == true, and then call Join in the main cluster component. Only when the Raft peer transitions to Voter, consensus becomes ready, and cluster becomes Ready. This is cleaner, works better and is less complex than before (supporting both flags and config values). We also backup and clean the state whenever we are boostrapping, automatically * ipfs-cluster-service no longer runs the daemon. Starting cluster needs now "ipfs-cluster-service daemon". The daemon specific flags (bootstrap, alloc) are now flags for the daemon subcommand. Here we mimic ipfs ("ipfs" does not start the daemon but print help) and pave the path for merging both service and ctl in the future. While this brings some breaking changes, it significantly reduces the complexity of the configuration, the code and most importantly, the documentation. It should be easier now to explain the user what is the right way to launch a cluster peer, and more difficult to make mistakes. As a side effect, the PR also: * Fixes #381 - peers with dynamic addresses * Fixes #371 - peers should be Raft configuration option * Fixes #378 - waitForUpdates may return before state fully synced * Fixes #235 - config option shadowing (no cfg saves, no need to shadow) License: MIT Signed-off-by: Hector Sanjuan <code@hector.link>
2018-04-28 22:22:23 +00:00
// Start the rest and join
for i := 1; i < nClusters; i++ {
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
clusters[i] = createCluster(t, hosts[i], dhts[i], cfgs[i], stores[i], cons[i], apis[i], ipfss[i], trackers[i], mons[i], allocs[i], infs[i], tracers[i])
err := clusters[i].Join(ctx, bootstrapAddr)
Feat: emancipate Consensus from the Cluster component This commit promotes the Consensus component (and Raft) to become a fully independent thing like other components, passed to NewCluster during initialization. Cluster (main component) no longer creates the consensus layer internally. This has triggered a number of breaking changes that I will explain below. Motivation: Future work will require the possibility of running Cluster with a consensus layer that is not Raft. The "consensus" layer is in charge of maintaining two things: * The current cluster peerset, as required by the implementation * The current cluster pinset (shared state) While the pinset maintenance has always been in the consensus layer, the peerset maintenance was handled by the main component (starting by the "peers" key in the configuration) AND the Raft component (internally) and this generated lots of confusion: if the user edited the peers in the configuration they would be greeted with an error. The bootstrap process (adding a peer to an existing cluster) and configuration key also complicated many things, since the main component did it, but only when the consensus was initialized and in single peer mode. In all this we also mixed the peerstore (list of peer addresses in the libp2p host) with the peerset, when they need not to be linked. By initializing the consensus layer before calling NewCluster, all the difficulties in maintaining the current implementation in the same way have come to light. Thus, the following changes have been introduced: * Remove "peers" and "bootstrap" keys from the configuration: we no longer edit or save the configuration files. This was a very bad practice, requiring write permissions by the process to the file containing the private key and additionally made things like Puppet deployments of cluster difficult as configuration would mutate from its initial version. Needless to say all the maintenance associated to making sure peers and bootstrap had correct values when peers are bootstrapped or removed. A loud and detailed error message has been added when staring cluster with an old config, along with instructions on how to move forward. * Introduce a PeerstoreFile ("peerstore") which stores peer addresses: in ipfs, the peerstore is not persisted because it can be re-built from the network bootstrappers and the DHT. Cluster should probably also allow discoverability of peers addresses (when not bootstrapping, as in that case we have it), but in the meantime, we will read and persist the peerstore addresses for cluster peers in this file, different from the configuration. Note that dns multiaddresses are now fully supported and no IPs are saved when we have DNS multiaddresses for a peer. * The former "peer_manager" code is now a pstoremgr module, providing utilities to parse, add, list and generally maintain the libp2p host peerstore, including operations on the PeerstoreFile. This "pstoremgr" can now also be extended to perform address autodiscovery and other things indepedently from Cluster. * Create and initialize Raft outside of the main Cluster component: since we can now launch Raft independently from Cluster, we have more degrees of freedom. A new "staging" option when creating the object allows a raft peer to be launched in Staging mode, waiting to be added to a running consensus, and thus, not electing itself as leader or doing anything like we were doing before. This additionally allows us to track when the peer has become a Voter, which only happens when it's caught up with the state, something that was wonky previously. * The raft configuration now includes an InitPeerset key, which allows to provide a peerset for new peers and which is ignored when staging==true. The whole Raft initialization code is way cleaner and stronger now. * Cluster peer bootsrapping is now an ipfs-cluster-service feature. The --bootstrap flag works as before (additionally allowing comma-separated-list of entries). What bootstrap does, is to initialize Raft with staging == true, and then call Join in the main cluster component. Only when the Raft peer transitions to Voter, consensus becomes ready, and cluster becomes Ready. This is cleaner, works better and is less complex than before (supporting both flags and config values). We also backup and clean the state whenever we are boostrapping, automatically * ipfs-cluster-service no longer runs the daemon. Starting cluster needs now "ipfs-cluster-service daemon". The daemon specific flags (bootstrap, alloc) are now flags for the daemon subcommand. Here we mimic ipfs ("ipfs" does not start the daemon but print help) and pave the path for merging both service and ctl in the future. While this brings some breaking changes, it significantly reduces the complexity of the configuration, the code and most importantly, the documentation. It should be easier now to explain the user what is the right way to launch a cluster peer, and more difficult to make mistakes. As a side effect, the PR also: * Fixes #381 - peers with dynamic addresses * Fixes #371 - peers should be Raft configuration option * Fixes #378 - waitForUpdates may return before state fully synced * Fixes #235 - config option shadowing (no cfg saves, no need to shadow) License: MIT Signed-off-by: Hector Sanjuan <code@hector.link>
2018-04-28 22:22:23 +00:00
if err != nil {
logger.Error(err)
t.Fatal(err)
}
<-clusters[i].Ready()
}
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
// connect all hosts
for _, h := range hosts {
for _, h2 := range hosts {
if h.ID() != h2.ID() {
h.Peerstore().AddAddrs(h2.ID(), h2.Addrs(), peerstore.PermanentAddrTTL)
_, err := h.Network().DialPeer(ctx, h2.ID())
if err != nil {
t.Log(err)
}
}
}
}
waitForLeader(t, clusters)
waitForClustersHealthy(t, clusters)
return clusters, ipfsMocks
}
func shutdownClusters(t *testing.T, clusters []*Cluster, m []*test.IpfsMock) {
for i, c := range clusters {
shutdownCluster(t, c, m[i])
}
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
os.RemoveAll(testsFolder)
}
func shutdownCluster(t *testing.T, c *Cluster, m *test.IpfsMock) {
err := c.Shutdown(context.Background())
if err != nil {
t.Error(err)
}
c.dht.Close()
c.host.Close()
c.datastore.Close()
m.Close()
}
func collectGlobalPinInfos(t *testing.T, out <-chan api.GlobalPinInfo, timeout time.Duration) []api.GlobalPinInfo {
t.Helper()
ctx, cancel := context.WithTimeout(context.Background(), timeout)
defer cancel()
var gpis []api.GlobalPinInfo
for {
select {
case <-ctx.Done():
t.Error(ctx.Err())
return gpis
case gpi, ok := <-out:
if !ok {
return gpis
}
gpis = append(gpis, gpi)
}
}
}
func collectPinInfos(t *testing.T, out <-chan api.PinInfo) []api.PinInfo {
t.Helper()
ctx, cancel := context.WithTimeout(context.Background(), 5*time.Second)
defer cancel()
var pis []api.PinInfo
for {
select {
case <-ctx.Done():
t.Error(ctx.Err())
return pis
case pi, ok := <-out:
if !ok {
return pis
}
pis = append(pis, pi)
}
}
}
func runF(t *testing.T, clusters []*Cluster, f func(*testing.T, *Cluster)) {
t.Helper()
var wg sync.WaitGroup
for _, c := range clusters {
wg.Add(1)
go func(c *Cluster) {
defer wg.Done()
f(t, c)
}(c)
}
wg.Wait()
}
//////////////////////////////////////
// Delay and wait functions
//
// Delays are used in tests to wait for certain events to happen:
// * ttlDelay() waits for metrics to arrive. If you pin something
// and your next operation depends on updated metrics, you need to wait
// * pinDelay() accounts for the time necessary to pin something and for the new
// log entry to be visible in all cluster peers
// * delay just sleeps a second or two.
// * waitForLeader functions make sure there is a raft leader, for example,
// after killing the leader.
//
// The values for delays are a result of testing and adjusting so tests pass
// in travis, jenkins etc., taking into account the values used in the
// testing configuration (config_test.go).
func delay() {
var d int
if nClusters > 10 {
d = 3000
} else {
d = 2000
}
time.Sleep(time.Duration(d) * time.Millisecond)
}
func pinDelay() {
time.Sleep(800 * time.Millisecond)
}
func ttlDelay() {
time.Sleep(ttlDelayTime)
}
// Like waitForLeader but letting metrics expire before waiting, and
// waiting for new metrics to arrive afterwards.
func waitForLeaderAndMetrics(t *testing.T, clusters []*Cluster) {
ttlDelay()
waitForLeader(t, clusters)
ttlDelay()
}
// Makes sure there is a leader and everyone knows about it.
func waitForLeader(t *testing.T, clusters []*Cluster) {
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
if consensus == "crdt" {
return // yai
}
ctx := context.Background()
timer := time.NewTimer(time.Minute)
ticker := time.NewTicker(100 * time.Millisecond)
loop:
for {
select {
case <-timer.C:
t.Fatal("timed out waiting for a leader")
case <-ticker.C:
for _, cl := range clusters {
if cl.shutdownB {
continue // skip shutdown clusters
}
_, err := cl.consensus.Leader(ctx)
if err != nil {
continue loop
}
}
break loop
}
}
}
func waitForClustersHealthy(t *testing.T, clusters []*Cluster) {
t.Helper()
if len(clusters) == 0 {
return
}
timer := time.NewTimer(15 * time.Second)
for {
ttlDelay()
metrics := clusters[0].monitor.LatestMetrics(context.Background(), clusters[0].informers[0].Name())
healthy := 0
for _, m := range metrics {
if !m.Expired() {
healthy++
}
}
if len(clusters) == healthy {
return
}
select {
case <-timer.C:
t.Fatal("timed out waiting for clusters to be healthy")
default:
}
}
}
/////////////////////////////////////////
func TestClustersVersion(t *testing.T) {
clusters, mock := createClusters(t)
defer shutdownClusters(t, clusters, mock)
f := func(t *testing.T, c *Cluster) {
v := c.Version()
if v != version.Version.String() {
t.Error("Bad version")
}
}
runF(t, clusters, f)
}
func TestClustersPeers(t *testing.T) {
ctx := context.Background()
clusters, mock := createClusters(t)
defer shutdownClusters(t, clusters, mock)
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
delay()
j := rand.Intn(nClusters) // choose a random cluster peer
out := make(chan api.ID, len(clusters))
clusters[j].Peers(ctx, out)
if len(out) != nClusters {
t.Fatal("expected as many peers as clusters")
}
clusterIDMap := make(map[peer.ID]api.ID)
peerIDMap := make(map[peer.ID]api.ID)
for _, c := range clusters {
id := c.ID(ctx)
clusterIDMap[id.ID] = id
}
for p := range out {
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
if p.Error != "" {
t.Error(p.ID, p.Error)
continue
}
peerIDMap[p.ID] = p
}
for k, id := range clusterIDMap {
id2, ok := peerIDMap[k]
if !ok {
t.Fatal("expected id in both maps")
}
//if !crypto.KeyEqual(id.PublicKey, id2.PublicKey) {
// t.Error("expected same public key")
//}
if id.IPFS.ID != id2.IPFS.ID {
t.Error("expected same ipfs daemon ID")
}
}
}
func TestClustersPin(t *testing.T) {
ctx := context.Background()
clusters, mock := createClusters(t)
defer shutdownClusters(t, clusters, mock)
prefix := test.Cid1.Prefix()
ttlDelay()
for i := 0; i < nPins; i++ {
j := rand.Intn(nClusters) // choose a random cluster peer
h, err := prefix.Sum(randomBytes()) // create random cid
if err != nil {
t.Fatal(err)
}
_, err = clusters[j].Pin(ctx, h, api.PinOptions{})
if err != nil {
t.Errorf("error pinning %s: %s", h, err)
}
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
// // Test re-pin
// err = clusters[j].Pin(ctx, api.PinCid(h))
// if err != nil {
// t.Errorf("error repinning %s: %s", h, err)
// }
}
switch consensus {
case "crdt":
time.Sleep(10 * time.Second)
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
default:
delay()
}
fpinned := func(t *testing.T, c *Cluster) {
out := make(chan api.PinInfo, 10)
go func() {
err := c.tracker.StatusAll(ctx, api.TrackerStatusUndefined, out)
if err != nil {
t.Error(err)
}
}()
status := collectPinInfos(t, out)
for _, v := range status {
if v.Status != api.TrackerStatusPinned {
t.Errorf("%s should have been pinned but it is %s", v.Cid, v.Status)
}
}
if l := len(status); l != nPins {
t.Errorf("Pinned %d out of %d requests", l, nPins)
}
}
runF(t, clusters, fpinned)
// Unpin everything
pinList, err := clusters[0].pinsSlice(ctx)
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
if err != nil {
t.Fatal(err)
}
if len(pinList) != nPins {
t.Fatalf("pin list has %d but pinned %d", len(pinList), nPins)
}
for i := 0; i < len(pinList); i++ {
// test re-unpin fails
j := rand.Intn(nClusters) // choose a random cluster peer
_, err := clusters[j].Unpin(ctx, pinList[i].Cid)
if err != nil {
t.Errorf("error unpinning %s: %s", pinList[i].Cid, err)
}
}
switch consensus {
case "crdt":
time.Sleep(10 * time.Second)
default:
delay()
}
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
for i := 0; i < len(pinList); i++ {
j := rand.Intn(nClusters) // choose a random cluster peer
_, err := clusters[j].Unpin(ctx, pinList[i].Cid)
if err == nil {
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
t.Errorf("expected error re-unpinning %s", pinList[i].Cid)
}
}
delay()
funpinned := func(t *testing.T, c *Cluster) {
out := make(chan api.PinInfo)
go func() {
err := c.tracker.StatusAll(ctx, api.TrackerStatusUndefined, out)
if err != nil {
t.Error(err)
}
}()
status := collectPinInfos(t, out)
for _, v := range status {
t.Errorf("%s should have been unpinned but it is %s", v.Cid, v.Status)
}
}
runF(t, clusters, funpinned)
}
func TestClustersPinUpdate(t *testing.T) {
ctx := context.Background()
clusters, mock := createClusters(t)
defer shutdownClusters(t, clusters, mock)
prefix := test.Cid1.Prefix()
ttlDelay()
h, _ := prefix.Sum(randomBytes()) // create random cid
h2, _ := prefix.Sum(randomBytes()) // create random cid
_, err := clusters[0].PinUpdate(ctx, h, h2, api.PinOptions{})
if err == nil || err != state.ErrNotFound {
t.Fatal("pin update should fail when from is not pinned")
}
_, err = clusters[0].Pin(ctx, h, api.PinOptions{})
if err != nil {
t.Errorf("error pinning %s: %s", h, err)
}
pinDelay()
expiry := time.Now().AddDate(1, 0, 0)
opts2 := api.PinOptions{
UserAllocations: []peer.ID{clusters[0].host.ID()}, // should not be used
PinUpdate: h,
Name: "new name",
ExpireAt: expiry,
}
_, err = clusters[0].Pin(ctx, h2, opts2) // should call PinUpdate
if err != nil {
t.Errorf("error pin-updating %s: %s", h2, err)
}
pinDelay()
f := func(t *testing.T, c *Cluster) {
pinget, err := c.PinGet(ctx, h2)
if err != nil {
t.Fatal(err)
}
if len(pinget.Allocations) != 0 {
t.Error("new pin should be allocated everywhere like pin1")
}
if pinget.MaxDepth != -1 {
t.Error("updated pin should be recursive like pin1")
}
// We compare Unix seconds because our protobuf serde will have
// lost any sub-second precision.
if pinget.ExpireAt.Unix() != expiry.Unix() {
t.Errorf("Expiry didn't match. Expected: %s. Got: %s", expiry, pinget.ExpireAt)
}
if pinget.Name != "new name" {
t.Error("name should be kept")
}
}
runF(t, clusters, f)
}
func TestClustersPinDirect(t *testing.T) {
ctx := context.Background()
clusters, mock := createClusters(t)
defer shutdownClusters(t, clusters, mock)
prefix := test.Cid1.Prefix()
ttlDelay()
h, _ := prefix.Sum(randomBytes()) // create random cid
_, err := clusters[0].Pin(ctx, h, api.PinOptions{Mode: api.PinModeDirect})
if err != nil {
t.Fatal(err)
}
pinDelay()
f := func(t *testing.T, c *Cluster, mode api.PinMode) {
pinget, err := c.PinGet(ctx, h)
if err != nil {
t.Fatal(err)
}
if pinget.Mode != mode {
t.Error("pin should be pinned in direct mode")
}
if pinget.MaxDepth != mode.ToPinDepth() {
t.Errorf("pin should have max-depth %d but has %d", mode.ToPinDepth(), pinget.MaxDepth)
}
pInfo := c.StatusLocal(ctx, h)
if pInfo.Error != "" {
t.Error(pInfo.Error)
}
if pInfo.Status != api.TrackerStatusPinned {
t.Error(pInfo.Error)
t.Error("the status should show the hash as pinned")
}
}
runF(t, clusters, func(t *testing.T, c *Cluster) {
f(t, c, api.PinModeDirect)
})
// Convert into a recursive mode
_, err = clusters[0].Pin(ctx, h, api.PinOptions{Mode: api.PinModeRecursive})
if err != nil {
t.Fatal(err)
}
pinDelay()
runF(t, clusters, func(t *testing.T, c *Cluster) {
f(t, c, api.PinModeRecursive)
})
// This should fail as we cannot convert back to direct
_, err = clusters[0].Pin(ctx, h, api.PinOptions{Mode: api.PinModeDirect})
if err == nil {
t.Error("a recursive pin cannot be converted back to direct pin")
}
}
func TestClustersStatusAll(t *testing.T) {
ctx := context.Background()
clusters, mock := createClusters(t)
defer shutdownClusters(t, clusters, mock)
h := test.Cid1
clusters[0].Pin(ctx, h, api.PinOptions{Name: "test"})
pinDelay()
// Global status
f := func(t *testing.T, c *Cluster) {
out := make(chan api.GlobalPinInfo, 10)
go func() {
err := c.StatusAll(ctx, api.TrackerStatusUndefined, out)
if err != nil {
t.Error(err)
}
}()
statuses := collectGlobalPinInfos(t, out, 5*time.Second)
if len(statuses) != 1 {
t.Fatal("bad status. Expected one item")
}
if !statuses[0].Cid.Equals(h) {
t.Error("bad cid in status")
}
if statuses[0].Name != "test" {
t.Error("globalPinInfo should have the name")
}
info := statuses[0].PeerMap
if len(info) != nClusters {
t.Error("bad info in status")
}
for _, pi := range info {
if pi.IPFS != test.PeerID1 {
t.Error("ipfs not set in pin status")
}
}
pid := peer.Encode(c.host.ID())
if info[pid].Status != api.TrackerStatusPinned {
t.Error("the hash should have been pinned")
}
status, err := c.Status(ctx, h)
if err != nil {
t.Error(err)
}
pinfo, ok := status.PeerMap[pid]
if !ok {
t.Fatal("Host not in status")
}
if pinfo.Status != api.TrackerStatusPinned {
t.Error(pinfo.Error)
t.Error("the status should show the hash as pinned")
}
}
runF(t, clusters, f)
}
func TestClustersStatusAllWithErrors(t *testing.T) {
ctx := context.Background()
clusters, mock := createClusters(t)
defer shutdownClusters(t, clusters, mock)
h := test.Cid1
clusters[0].Pin(ctx, h, api.PinOptions{Name: "test"})
pinDelay()
// shutdown 1 cluster peer
clusters[1].Shutdown(ctx)
clusters[1].host.Close()
delay()
f := func(t *testing.T, c *Cluster) {
// skip if it's the shutdown peer
if c.ID(ctx).ID == clusters[1].ID(ctx).ID {
return
}
out := make(chan api.GlobalPinInfo, 10)
go func() {
err := c.StatusAll(ctx, api.TrackerStatusUndefined, out)
if err != nil {
t.Error(err)
}
}()
statuses := collectGlobalPinInfos(t, out, 5*time.Second)
if len(statuses) != 1 {
t.Fatal("bad status. Expected one item")
}
if !statuses[0].Cid.Equals(h) {
t.Error("wrong Cid in globalPinInfo")
}
if statuses[0].Name != "test" {
t.Error("wrong Name in globalPinInfo")
}
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
// Raft and CRDT behave differently here
switch consensus {
case "raft":
// Raft will have all statuses with one of them
// being in ERROR because the peer is off
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
stts := statuses[0]
if len(stts.PeerMap) != nClusters {
t.Error("bad number of peers in status")
}
pid := peer.Encode(clusters[1].id)
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
errst := stts.PeerMap[pid]
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
if errst.Status != api.TrackerStatusClusterError {
t.Error("erroring status should be set to ClusterError:", errst.Status)
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
}
if errst.PeerName != "peer_1" {
t.Error("peername should have been set in the erroring peer too from the cache")
}
if errst.IPFS != test.PeerID1 {
t.Error("IPFS ID should have been set in the erroring peer too from the cache")
}
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
// now check with Cid status
status, err := c.Status(ctx, h)
if err != nil {
t.Error(err)
}
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
pinfo := status.PeerMap[pid]
if pinfo.Status != api.TrackerStatusClusterError {
t.Error("erroring status should be ClusterError:", pinfo.Status)
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
}
if pinfo.PeerName != "peer_1" {
t.Error("peername should have been set in the erroring peer too from the cache")
}
if pinfo.IPFS != test.PeerID1 {
t.Error("IPFS ID should have been set in the erroring peer too from the cache")
}
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
case "crdt":
// CRDT will not have contacted the offline peer because
// its metric expired and therefore is not in the
// peerset.
if len(statuses[0].PeerMap) != nClusters-1 {
t.Error("expected a different number of statuses")
}
default:
t.Fatal("bad consensus")
}
}
runF(t, clusters, f)
}
func TestClustersRecoverLocal(t *testing.T) {
ctx := context.Background()
clusters, mock := createClusters(t)
defer shutdownClusters(t, clusters, mock)
h := test.ErrorCid // This cid always fails
h2 := test.Cid2
ttlDelay()
clusters[0].Pin(ctx, h, api.PinOptions{})
clusters[0].Pin(ctx, h2, api.PinOptions{})
pinDelay()
pinDelay()
f := func(t *testing.T, c *Cluster) {
_, err := c.RecoverLocal(ctx, h)
Fix: maptracker race issues This commit attempts to fix race issues in the maptracker since the introduction of the OperationTracker. There were two main problems: * Duplicity tracking the state both in the state map and the opTracker * Non atomiciy of operations with different threads being able to affect other threads operations. A test performing random Track/Untracks on the same Cid quickly showed that items would sometimes stay as pin_queued or pin_unqueued. That happened because operations could be cancelled under the hood by a different request, while leaving the map status untouched. It was not simply to deal with this issues without a refactoring. First, the state map has been removed, and the operation tracker now provides status information for any Cid. This implies that the tracker keeps all operations and operations have a `PhaseDone`. There's also a new `OperationRemote` type. Secondly, operations are only created in the tracker and can only be removed by their creators (they can be overwritten by other operations though). Operations cannot be accessed directly and modifications are limited to setting Error for PhaseDone operations. After created, *Operations are queued in the pinWorker queues which handle any status updates. This means, that, even when an operation has been removed from the tracker, status updates will not interfere with any other newer operations. In the maptracker, only the Unpin worker Cleans operations once processed. A sucessful unpin is the only way that a delete() happens in the tracker map. Otherwise, operations stay there until a newer operation for the Cid arrives and 1) cancels the existing one 2) takes its place. The tracker refuses to create a new operation if a similar "ongoing" operation of the same type exists. The final change is that Recover and RecoverAll() are not async and play by the same rules as Track() and Untrack(), queueing the items to be recovered. Note: for stateless pintracker, the tracker will need to Clean() operation of type OperationPin as well, and complement the Status reported by the tracker with those coming from IPFS. License: MIT Signed-off-by: Hector Sanjuan <code@hector.link>
2018-05-25 16:32:10 +00:00
if err != nil {
t.Fatal(err)
}
Fix: maptracker race issues This commit attempts to fix race issues in the maptracker since the introduction of the OperationTracker. There were two main problems: * Duplicity tracking the state both in the state map and the opTracker * Non atomiciy of operations with different threads being able to affect other threads operations. A test performing random Track/Untracks on the same Cid quickly showed that items would sometimes stay as pin_queued or pin_unqueued. That happened because operations could be cancelled under the hood by a different request, while leaving the map status untouched. It was not simply to deal with this issues without a refactoring. First, the state map has been removed, and the operation tracker now provides status information for any Cid. This implies that the tracker keeps all operations and operations have a `PhaseDone`. There's also a new `OperationRemote` type. Secondly, operations are only created in the tracker and can only be removed by their creators (they can be overwritten by other operations though). Operations cannot be accessed directly and modifications are limited to setting Error for PhaseDone operations. After created, *Operations are queued in the pinWorker queues which handle any status updates. This means, that, even when an operation has been removed from the tracker, status updates will not interfere with any other newer operations. In the maptracker, only the Unpin worker Cleans operations once processed. A sucessful unpin is the only way that a delete() happens in the tracker map. Otherwise, operations stay there until a newer operation for the Cid arrives and 1) cancels the existing one 2) takes its place. The tracker refuses to create a new operation if a similar "ongoing" operation of the same type exists. The final change is that Recover and RecoverAll() are not async and play by the same rules as Track() and Untrack(), queueing the items to be recovered. Note: for stateless pintracker, the tracker will need to Clean() operation of type OperationPin as well, and complement the Status reported by the tracker with those coming from IPFS. License: MIT Signed-off-by: Hector Sanjuan <code@hector.link>
2018-05-25 16:32:10 +00:00
// Wait for queue to be processed
delay()
info := c.StatusLocal(ctx, h)
if info.Status != api.TrackerStatusPinError {
t.Errorf("element is %s and not PinError", info.Status)
}
// Recover good ID
info, _ = c.RecoverLocal(ctx, h2)
if info.Status != api.TrackerStatusPinned {
t.Error("element should be in Pinned state")
}
}
// Test Local syncs
runF(t, clusters, f)
}
func TestClustersRecover(t *testing.T) {
ctx := context.Background()
clusters, mock := createClusters(t)
defer shutdownClusters(t, clusters, mock)
h := test.ErrorCid // This cid always fails
h2 := test.Cid2
ttlDelay()
clusters[0].Pin(ctx, h, api.PinOptions{})
clusters[0].Pin(ctx, h2, api.PinOptions{})
pinDelay()
pinDelay()
j := rand.Intn(nClusters)
ginfo, err := clusters[j].Recover(ctx, h)
if err != nil {
// we always attempt to return a valid response
// with errors contained in GlobalPinInfo
t.Fatal("did not expect an error")
}
if len(ginfo.PeerMap) != nClusters {
t.Error("number of peers do not match")
}
Fix: maptracker race issues This commit attempts to fix race issues in the maptracker since the introduction of the OperationTracker. There were two main problems: * Duplicity tracking the state both in the state map and the opTracker * Non atomiciy of operations with different threads being able to affect other threads operations. A test performing random Track/Untracks on the same Cid quickly showed that items would sometimes stay as pin_queued or pin_unqueued. That happened because operations could be cancelled under the hood by a different request, while leaving the map status untouched. It was not simply to deal with this issues without a refactoring. First, the state map has been removed, and the operation tracker now provides status information for any Cid. This implies that the tracker keeps all operations and operations have a `PhaseDone`. There's also a new `OperationRemote` type. Secondly, operations are only created in the tracker and can only be removed by their creators (they can be overwritten by other operations though). Operations cannot be accessed directly and modifications are limited to setting Error for PhaseDone operations. After created, *Operations are queued in the pinWorker queues which handle any status updates. This means, that, even when an operation has been removed from the tracker, status updates will not interfere with any other newer operations. In the maptracker, only the Unpin worker Cleans operations once processed. A sucessful unpin is the only way that a delete() happens in the tracker map. Otherwise, operations stay there until a newer operation for the Cid arrives and 1) cancels the existing one 2) takes its place. The tracker refuses to create a new operation if a similar "ongoing" operation of the same type exists. The final change is that Recover and RecoverAll() are not async and play by the same rules as Track() and Untrack(), queueing the items to be recovered. Note: for stateless pintracker, the tracker will need to Clean() operation of type OperationPin as well, and complement the Status reported by the tracker with those coming from IPFS. License: MIT Signed-off-by: Hector Sanjuan <code@hector.link>
2018-05-25 16:32:10 +00:00
// Wait for queue to be processed
delay()
ginfo, err = clusters[j].Status(ctx, h)
Fix: maptracker race issues This commit attempts to fix race issues in the maptracker since the introduction of the OperationTracker. There were two main problems: * Duplicity tracking the state both in the state map and the opTracker * Non atomiciy of operations with different threads being able to affect other threads operations. A test performing random Track/Untracks on the same Cid quickly showed that items would sometimes stay as pin_queued or pin_unqueued. That happened because operations could be cancelled under the hood by a different request, while leaving the map status untouched. It was not simply to deal with this issues without a refactoring. First, the state map has been removed, and the operation tracker now provides status information for any Cid. This implies that the tracker keeps all operations and operations have a `PhaseDone`. There's also a new `OperationRemote` type. Secondly, operations are only created in the tracker and can only be removed by their creators (they can be overwritten by other operations though). Operations cannot be accessed directly and modifications are limited to setting Error for PhaseDone operations. After created, *Operations are queued in the pinWorker queues which handle any status updates. This means, that, even when an operation has been removed from the tracker, status updates will not interfere with any other newer operations. In the maptracker, only the Unpin worker Cleans operations once processed. A sucessful unpin is the only way that a delete() happens in the tracker map. Otherwise, operations stay there until a newer operation for the Cid arrives and 1) cancels the existing one 2) takes its place. The tracker refuses to create a new operation if a similar "ongoing" operation of the same type exists. The final change is that Recover and RecoverAll() are not async and play by the same rules as Track() and Untrack(), queueing the items to be recovered. Note: for stateless pintracker, the tracker will need to Clean() operation of type OperationPin as well, and complement the Status reported by the tracker with those coming from IPFS. License: MIT Signed-off-by: Hector Sanjuan <code@hector.link>
2018-05-25 16:32:10 +00:00
if err != nil {
t.Fatal(err)
}
pinfo, ok := ginfo.PeerMap[peer.Encode(clusters[j].host.ID())]
if !ok {
t.Fatal("should have info for this host")
}
if pinfo.Error == "" {
t.Error("pinInfo error should not be empty")
}
for _, c := range clusters {
inf, ok := ginfo.PeerMap[peer.Encode(c.host.ID())]
if !ok {
t.Fatal("GlobalPinInfo should not be empty for this host")
}
if inf.Status != api.TrackerStatusPinError {
t.Logf("%+v", inf)
t.Error("should be PinError in all peers")
}
}
// Test with a good Cid
j = rand.Intn(nClusters)
ginfo, err = clusters[j].Recover(ctx, h2)
if err != nil {
t.Fatal(err)
}
if !ginfo.Cid.Equals(h2) {
t.Error("GlobalPinInfo should be for testrCid2")
}
if len(ginfo.PeerMap) != nClusters {
t.Error("number of peers do not match")
}
for _, c := range clusters {
inf, ok := ginfo.PeerMap[peer.Encode(c.host.ID())]
if !ok {
t.Fatal("GlobalPinInfo should have this cluster")
}
if inf.Status != api.TrackerStatusPinned {
t.Error("the GlobalPinInfo should show Pinned in all peers")
}
}
}
func TestClustersRecoverAll(t *testing.T) {
ctx := context.Background()
clusters, mock := createClusters(t)
defer shutdownClusters(t, clusters, mock)
h1 := test.Cid1
hError := test.ErrorCid
ttlDelay()
clusters[0].Pin(ctx, h1, api.PinOptions{})
clusters[0].Pin(ctx, hError, api.PinOptions{})
pinDelay()
out := make(chan api.GlobalPinInfo)
go func() {
err := clusters[rand.Intn(nClusters)].RecoverAll(ctx, out)
if err != nil {
t.Error(err)
}
}()
gInfos := collectGlobalPinInfos(t, out, 5*time.Second)
if len(gInfos) != 1 {
t.Error("expected one items")
}
for _, gInfo := range gInfos {
if len(gInfo.PeerMap) != nClusters {
t.Error("number of peers do not match")
}
}
}
func TestClustersShutdown(t *testing.T) {
ctx := context.Background()
clusters, mock := createClusters(t)
defer shutdownClusters(t, clusters, mock)
f := func(t *testing.T, c *Cluster) {
err := c.Shutdown(ctx)
if err != nil {
t.Error("should be able to shutdown cleanly")
}
}
// Shutdown 3 times
runF(t, clusters, f)
runF(t, clusters, f)
runF(t, clusters, f)
}
func TestClustersReplicationOverall(t *testing.T) {
ctx := context.Background()
clusters, mock := createClusters(t)
defer shutdownClusters(t, clusters, mock)
for _, c := range clusters {
c.config.ReplicationFactorMin = nClusters - 1
c.config.ReplicationFactorMax = nClusters - 1
}
// Why is replication factor nClusters - 1?
// Because that way we know that pinning nCluster
// pins with an strategy like numpins/disk
// will result in each peer holding locally exactly
// nCluster pins.
prefix := test.Cid1.Prefix()
for i := 0; i < nClusters; i++ {
// Pick a random cluster and hash
j := rand.Intn(nClusters) // choose a random cluster peer
h, err := prefix.Sum(randomBytes()) // create random cid
if err != nil {
t.Fatal(err)
}
_, err = clusters[j].Pin(ctx, h, api.PinOptions{})
if err != nil {
t.Error(err)
}
pinDelay()
// check that it is held by exactly nClusters - 1 peers
gpi, err := clusters[j].Status(ctx, h)
if err != nil {
t.Fatal(err)
}
numLocal := 0
numRemote := 0
for _, v := range gpi.PeerMap {
if v.Status == api.TrackerStatusPinned {
numLocal++
} else if v.Status == api.TrackerStatusRemote {
numRemote++
}
}
if numLocal != nClusters-1 {
t.Errorf(
"We wanted replication %d but it's only %d",
nClusters-1,
numLocal,
)
}
if numRemote != 1 {
t.Errorf("We wanted 1 peer track as remote but %d do", numRemote)
}
ttlDelay()
}
f := func(t *testing.T, c *Cluster) {
// confirm that the pintracker state matches the current global state
out := make(chan api.PinInfo, 100)
go func() {
err := c.tracker.StatusAll(ctx, api.TrackerStatusUndefined, out)
if err != nil {
t.Error(err)
}
}()
pinfos := collectPinInfos(t, out)
if len(pinfos) != nClusters {
t.Error("Pinfos does not have the expected pins")
}
numRemote := 0
numLocal := 0
for _, pi := range pinfos {
switch pi.Status {
case api.TrackerStatusPinned:
numLocal++
case api.TrackerStatusRemote:
numRemote++
}
}
if numLocal != nClusters-1 {
t.Errorf("%s: Expected %d local pins but got %d", c.id.String(), nClusters-1, numLocal)
}
if numRemote != 1 {
t.Errorf("%s: Expected 1 remote pin but got %d", c.id.String(), numRemote)
}
outPins := make(chan api.Pin)
go func() {
err := c.Pins(ctx, outPins)
if err != nil {
t.Error(err)
}
}()
for pin := range outPins {
allocs := pin.Allocations
if len(allocs) != nClusters-1 {
t.Errorf("Allocations are [%s]", allocs)
}
for _, a := range allocs {
if a == c.id {
pinfo := c.tracker.Status(ctx, pin.Cid)
if pinfo.Status != api.TrackerStatusPinned {
t.Errorf("Peer %s was allocated but it is not pinning cid", c.id)
}
}
}
}
}
runF(t, clusters, f)
}
// This test checks that we pin with ReplicationFactorMax when
// we can
func TestClustersReplicationFactorMax(t *testing.T) {
ctx := context.Background()
if nClusters < 3 {
t.Skip("Need at least 3 peers")
}
clusters, mock := createClusters(t)
defer shutdownClusters(t, clusters, mock)
for _, c := range clusters {
c.config.ReplicationFactorMin = 1
c.config.ReplicationFactorMax = nClusters - 1
}
ttlDelay()
h := test.Cid1
_, err := clusters[0].Pin(ctx, h, api.PinOptions{})
if err != nil {
t.Fatal(err)
}
pinDelay()
f := func(t *testing.T, c *Cluster) {
p, err := c.PinGet(ctx, h)
if err != nil {
t.Fatal(err)
}
if len(p.Allocations) != nClusters-1 {
t.Error("should have pinned nClusters - 1 allocations")
}
if p.ReplicationFactorMin != 1 {
t.Error("rplMin should be 1")
}
if p.ReplicationFactorMax != nClusters-1 {
t.Error("rplMax should be nClusters-1")
}
}
runF(t, clusters, f)
}
// This tests checks that repinning something that is overpinned
// removes some allocations
func TestClustersReplicationFactorMaxLower(t *testing.T) {
ctx := context.Background()
if nClusters < 5 {
t.Skip("Need at least 5 peers")
}
clusters, mock := createClusters(t)
defer shutdownClusters(t, clusters, mock)
for _, c := range clusters {
c.config.ReplicationFactorMin = 1
c.config.ReplicationFactorMax = nClusters
}
ttlDelay() // make sure we have places to pin
h := test.Cid1
_, err := clusters[0].Pin(ctx, h, api.PinOptions{})
if err != nil {
t.Fatal(err)
}
pinDelay()
p1, err := clusters[0].PinGet(ctx, h)
if err != nil {
t.Fatal(err)
}
if len(p1.Allocations) != nClusters {
t.Fatal("allocations should be nClusters")
}
opts := api.PinOptions{
ReplicationFactorMin: 1,
ReplicationFactorMax: 2,
}
_, err = clusters[0].Pin(ctx, h, opts)
if err != nil {
t.Fatal(err)
}
pinDelay()
p2, err := clusters[0].PinGet(ctx, h)
if err != nil {
t.Fatal(err)
}
if len(p2.Allocations) != 2 {
t.Fatal("allocations should have been reduced to 2")
}
}
// This test checks that when not all nodes are available,
// we pin in as many as we can aiming for ReplicationFactorMax
func TestClustersReplicationFactorInBetween(t *testing.T) {
ctx := context.Background()
if nClusters < 5 {
t.Skip("Need at least 5 peers")
}
clusters, mock := createClusters(t)
defer shutdownClusters(t, clusters, mock)
for _, c := range clusters {
c.config.ReplicationFactorMin = 1
c.config.ReplicationFactorMax = nClusters
}
ttlDelay()
// Shutdown two peers
clusters[nClusters-1].Shutdown(ctx)
clusters[nClusters-2].Shutdown(ctx)
waitForLeaderAndMetrics(t, clusters)
h := test.Cid1
_, err := clusters[0].Pin(ctx, h, api.PinOptions{})
if err != nil {
t.Fatal(err)
}
pinDelay()
f := func(t *testing.T, c *Cluster) {
if c == clusters[nClusters-1] || c == clusters[nClusters-2] {
return
}
p, err := c.PinGet(ctx, h)
if err != nil {
t.Fatal(err)
}
if len(p.Allocations) != nClusters-2 {
t.Error("should have pinned nClusters-2 allocations")
}
if p.ReplicationFactorMin != 1 {
t.Error("rplMin should be 1")
}
if p.ReplicationFactorMax != nClusters {
t.Error("rplMax should be nClusters")
}
}
runF(t, clusters, f)
}
// This test checks that we do not pin something for which
// we cannot reach ReplicationFactorMin
func TestClustersReplicationFactorMin(t *testing.T) {
ctx := context.Background()
if nClusters < 5 {
t.Skip("Need at least 5 peers")
}
clusters, mock := createClusters(t)
defer shutdownClusters(t, clusters, mock)
for _, c := range clusters {
c.config.ReplicationFactorMin = nClusters - 1
c.config.ReplicationFactorMax = nClusters
}
// Shutdown two peers
clusters[nClusters-1].Shutdown(ctx)
waitForLeaderAndMetrics(t, clusters)
clusters[nClusters-2].Shutdown(ctx)
waitForLeaderAndMetrics(t, clusters)
h := test.Cid1
_, err := clusters[0].Pin(ctx, h, api.PinOptions{})
if err == nil {
t.Error("Pin should have failed as rplMin cannot be satisfied")
}
t.Log(err)
if !strings.Contains(err.Error(), "not enough peers to allocate CID") {
t.Fatal(err)
}
}
// This tests checks that repinning something that has becomed
// underpinned actually changes nothing if it's sufficiently pinned
func TestClustersReplicationMinMaxNoRealloc(t *testing.T) {
ctx := context.Background()
if nClusters < 5 {
t.Skip("Need at least 5 peers")
}
clusters, mock := createClusters(t)
defer shutdownClusters(t, clusters, mock)
for _, c := range clusters {
c.config.ReplicationFactorMin = 1
c.config.ReplicationFactorMax = nClusters
}
ttlDelay()
h := test.Cid1
_, err := clusters[0].Pin(ctx, h, api.PinOptions{})
if err != nil {
t.Fatal(err)
}
pinDelay()
// Shutdown two peers
clusters[nClusters-1].Shutdown(ctx)
waitForLeaderAndMetrics(t, clusters)
clusters[nClusters-2].Shutdown(ctx)
waitForLeaderAndMetrics(t, clusters)
_, err = clusters[0].Pin(ctx, h, api.PinOptions{})
if err != nil {
t.Fatal(err)
}
pinDelay()
p, err := clusters[0].PinGet(ctx, h)
if err != nil {
t.Fatal(err)
}
if len(p.Allocations) != nClusters {
t.Error("allocations should still be nCluster even if not all available")
}
if p.ReplicationFactorMax != nClusters {
t.Error("rplMax should have not changed")
}
}
// This test checks that repinning something that has becomed
// underpinned does re-allocations when it's not sufficiently
// pinned anymore.
// FIXME: The manual repin only works if the pin options changed.
func TestClustersReplicationMinMaxRealloc(t *testing.T) {
ctx := context.Background()
if nClusters < 5 {
t.Skip("Need at least 5 peers")
}
clusters, mock := createClusters(t)
defer shutdownClusters(t, clusters, mock)
for _, c := range clusters {
c.config.ReplicationFactorMin = 3
c.config.ReplicationFactorMax = 4
}
ttlDelay() // make sure metrics are in
h := test.Cid1
_, err := clusters[0].Pin(ctx, h, api.PinOptions{
Name: "a",
})
if err != nil {
t.Fatal(err)
}
pinDelay()
p, err := clusters[0].PinGet(ctx, h)
if err != nil {
t.Fatal(err)
}
firstAllocations := p.Allocations
peerIDMap := make(map[peer.ID]*Cluster)
for _, a := range clusters {
peerIDMap[a.id] = a
}
// kill two of the allocations
// Only the first allocated peer (or the second if the first is
// alerting) will automatically repin.
alloc1 := peerIDMap[firstAllocations[1]]
alloc2 := peerIDMap[firstAllocations[2]]
safePeer := peerIDMap[firstAllocations[0]]
alloc1.Shutdown(ctx)
alloc2.Shutdown(ctx)
waitForLeaderAndMetrics(t, clusters)
// Repin - (although this should have been taken of as alerts
// happen for the shutdown nodes. We force re-allocation by
// changing the name.
_, err = safePeer.Pin(ctx, h, api.PinOptions{
Name: "b",
})
if err != nil {
t.Fatal(err)
}
pinDelay()
p, err = safePeer.PinGet(ctx, h)
if err != nil {
t.Fatal(err)
}
secondAllocations := p.Allocations
strings1 := api.PeersToStrings(firstAllocations)
strings2 := api.PeersToStrings(secondAllocations)
sort.Strings(strings1)
sort.Strings(strings2)
t.Logf("Allocs1: %s", strings1)
t.Logf("Allocs2: %s", strings2)
if fmt.Sprintf("%s", strings1) == fmt.Sprintf("%s", strings2) {
t.Error("allocations should have changed")
}
lenSA := len(secondAllocations)
expected := minInt(nClusters-2, 4)
if lenSA != expected {
t.Errorf("Insufficient reallocation, could have allocated to %d peers but instead only allocated to %d peers", expected, lenSA)
}
if lenSA < 3 {
t.Error("allocations should be more than rplMin")
}
}
// In this test we check that repinning something
// when a node has gone down will re-assign the pin
func TestClustersReplicationRealloc(t *testing.T) {
ctx := context.Background()
clusters, mock := createClusters(t)
defer shutdownClusters(t, clusters, mock)
for _, c := range clusters {
c.config.ReplicationFactorMin = nClusters - 1
c.config.ReplicationFactorMax = nClusters - 1
}
ttlDelay()
j := rand.Intn(nClusters)
h := test.Cid1
_, err := clusters[j].Pin(ctx, h, api.PinOptions{})
if err != nil {
t.Fatal(err)
}
// Let the pin arrive
pinDelay()
pinList, err := clusters[j].pinsSlice(ctx)
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
if err != nil {
t.Fatal(err)
}
pin := pinList[0]
allocs := sort.StringSlice(api.PeersToStrings(pin.Allocations))
allocs.Sort()
allocsStr := fmt.Sprintf("%s", allocs)
// Re-pin should work and be allocated to the same
// nodes
_, err = clusters[j].Pin(ctx, h, api.PinOptions{})
if err != nil {
t.Fatal(err)
}
pinDelay()
pinList2, err := clusters[j].pinsSlice(ctx)
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
if err != nil {
t.Fatal(err)
}
pin2 := pinList2[0]
allocs2 := sort.StringSlice(api.PeersToStrings(pin2.Allocations))
allocs2.Sort()
allocsStr2 := fmt.Sprintf("%s", allocs2)
if allocsStr != allocsStr2 {
t.Fatal("allocations changed without reason")
}
//t.Log(allocsStr)
//t.Log(allocsStr2)
var killedClusterIndex int
// find someone that pinned it and kill that cluster
for i, c := range clusters {
pinfo := c.tracker.Status(ctx, h)
if pinfo.Status == api.TrackerStatusPinned {
//t.Logf("Killing %s", c.id.Pretty())
killedClusterIndex = i
t.Logf("Shutting down %s", c.ID(ctx).ID)
c.Shutdown(ctx)
break
}
}
// let metrics expire and give time for the cluster to
// see if they have lost the leader
waitForLeaderAndMetrics(t, clusters)
// Make sure we haven't killed our randomly
// selected cluster
for j == killedClusterIndex {
j = rand.Intn(nClusters)
}
// now pin should succeed
_, err = clusters[j].Pin(ctx, h, api.PinOptions{})
if err != nil {
t.Fatal(err)
}
pinDelay()
numPinned := 0
for i, c := range clusters {
if i == killedClusterIndex {
continue
}
pinfo := c.tracker.Status(ctx, h)
if pinfo.Status == api.TrackerStatusPinned {
//t.Log(pinfo.Peer.Pretty())
numPinned++
}
}
if numPinned != nClusters-1 {
t.Error("pin should have been correctly re-assigned")
}
}
// In this test we try to pin something when there are not
// as many available peers a we need. It's like before, except
// more peers are killed.
func TestClustersReplicationNotEnoughPeers(t *testing.T) {
ctx := context.Background()
if nClusters < 5 {
t.Skip("Need at least 5 peers")
}
clusters, mock := createClusters(t)
defer shutdownClusters(t, clusters, mock)
for _, c := range clusters {
c.config.ReplicationFactorMin = nClusters - 1
c.config.ReplicationFactorMax = nClusters - 1
}
ttlDelay()
j := rand.Intn(nClusters)
_, err := clusters[j].Pin(ctx, test.Cid1, api.PinOptions{})
if err != nil {
t.Fatal(err)
}
// Let the pin arrive
pinDelay()
clusters[0].Shutdown(ctx)
clusters[1].Shutdown(ctx)
waitForLeaderAndMetrics(t, clusters)
_, err = clusters[2].Pin(ctx, test.Cid2, api.PinOptions{})
if err == nil {
t.Fatal("expected an error")
}
if !strings.Contains(err.Error(), "not enough peers to allocate") {
t.Error("different error than expected")
t.Error(err)
}
//t.Log(err)
}
func TestClustersRebalanceOnPeerDown(t *testing.T) {
ctx := context.Background()
if nClusters < 5 {
t.Skip("Need at least 5 peers")
}
clusters, mock := createClusters(t)
defer shutdownClusters(t, clusters, mock)
for _, c := range clusters {
c.config.ReplicationFactorMin = nClusters - 1
c.config.ReplicationFactorMax = nClusters - 1
}
// pin something
h := test.Cid1
clusters[0].Pin(ctx, h, api.PinOptions{})
pinDelay()
pinLocal := 0
pinRemote := 0
var localPinner string
var remotePinner string
var remotePinnerCluster *Cluster
status, _ := clusters[0].Status(ctx, h)
// check it was correctly pinned
for p, pinfo := range status.PeerMap {
if pinfo.Status == api.TrackerStatusPinned {
pinLocal++
localPinner = p
} else if pinfo.Status == api.TrackerStatusRemote {
pinRemote++
remotePinner = p
}
}
if pinLocal != nClusters-1 || pinRemote != 1 {
t.Fatal("Not pinned as expected")
}
// kill the local pinner
for _, c := range clusters {
clid := peer.Encode(c.id)
if clid == localPinner {
c.Shutdown(ctx)
} else if clid == remotePinner {
remotePinnerCluster = c
}
}
delay()
waitForLeaderAndMetrics(t, clusters) // in case we killed the leader
// It should be now pinned in the remote pinner
if s := remotePinnerCluster.tracker.Status(ctx, h).Status; s != api.TrackerStatusPinned {
t.Errorf("it should be pinned and is %s", s)
}
}
// Helper function for verifying cluster graph. Will only pass if exactly the
// peers in clusterIDs are fully connected to each other and the expected ipfs
// mock connectivity exists. Cluster peers not in clusterIDs are assumed to
// be disconnected and the graph should reflect this
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
func validateClusterGraph(t *testing.T, graph api.ConnectGraph, clusterIDs map[string]struct{}, peerNum int) {
// Check that all cluster peers see each other as peers
for id1, peers := range graph.ClusterLinks {
if _, ok := clusterIDs[id1]; !ok {
if len(peers) != 0 {
t.Errorf("disconnected peer %s is still connected in graph", id1)
}
continue
}
t.Logf("id: %s, peers: %v\n", id1, peers)
if len(peers) > len(clusterIDs)-1 {
t.Errorf("More peers recorded in graph than expected")
}
// Make lookup index for peers connected to id1
peerIndex := make(map[string]struct{})
for _, p := range peers {
peerIndex[peer.Encode(p)] = struct{}{}
}
for id2 := range clusterIDs {
if _, ok := peerIndex[id2]; id1 != id2 && !ok {
t.Errorf("Expected graph to see peer %s connected to peer %s", id1, id2)
}
}
}
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
if len(graph.ClusterLinks) != peerNum {
t.Errorf("Unexpected number of cluster nodes in graph")
}
// Check that all cluster peers are recorded as nodes in the graph
for id := range clusterIDs {
if _, ok := graph.ClusterLinks[id]; !ok {
t.Errorf("Expected graph to record peer %s as a node", id)
}
}
if len(graph.ClusterTrustLinks) != peerNum {
t.Errorf("Unexpected number of trust links in graph")
}
// Check that the mocked ipfs swarm is recorded
if len(graph.IPFSLinks) != 1 {
t.Error("Expected exactly one ipfs peer for all cluster nodes, the mocked peer")
}
links, ok := graph.IPFSLinks[peer.Encode(test.PeerID1)]
if !ok {
t.Error("Expected the mocked ipfs peer to be a node in the graph")
} else {
if len(links) != 2 || links[0] != test.PeerID4 ||
links[1] != test.PeerID5 {
t.Error("Swarm peers of mocked ipfs are not those expected")
}
}
// Check that the cluster to ipfs connections are all recorded
for id := range clusterIDs {
if ipfsID, ok := graph.ClustertoIPFS[id]; !ok {
t.Errorf("Expected graph to record peer %s's ipfs connection", id)
} else {
if ipfsID != test.PeerID1 {
t.Errorf("Unexpected error %s", ipfsID)
}
}
}
if len(graph.ClustertoIPFS) > len(clusterIDs) {
t.Error("More cluster to ipfs links recorded in graph than expected")
}
}
// In this test we get a cluster graph report from a random peer in a healthy
// fully connected cluster and verify that it is formed as expected.
func TestClustersGraphConnected(t *testing.T) {
ctx := context.Background()
clusters, mock := createClusters(t)
defer shutdownClusters(t, clusters, mock)
ttlDelay()
j := rand.Intn(nClusters) // choose a random cluster peer to query
graph, err := clusters[j].ConnectGraph()
if err != nil {
t.Fatal(err)
}
clusterIDs := make(map[string]struct{})
for _, c := range clusters {
id := peer.Encode(c.ID(ctx).ID)
clusterIDs[id] = struct{}{}
}
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
validateClusterGraph(t, graph, clusterIDs, nClusters)
}
// Similar to the previous test we get a cluster graph report from a peer.
// However now 2 peers have been shutdown and so we do not expect to see
// them in the graph
func TestClustersGraphUnhealthy(t *testing.T) {
ctx := context.Background()
clusters, mock := createClusters(t)
defer shutdownClusters(t, clusters, mock)
if nClusters < 5 {
t.Skip("Need at least 5 peers")
}
j := rand.Intn(nClusters) // choose a random cluster peer to query
// chose the clusters to shutdown
discon1 := -1
discon2 := -1
for i := range clusters {
if i != j {
if discon1 == -1 {
discon1 = i
} else {
discon2 = i
break
}
}
}
clusters[discon1].Shutdown(ctx)
clusters[discon1].host.Close()
clusters[discon2].Shutdown(ctx)
clusters[discon2].host.Close()
waitForLeaderAndMetrics(t, clusters)
graph, err := clusters[j].ConnectGraph()
if err != nil {
t.Fatal(err)
}
clusterIDs := make(map[string]struct{})
for i, c := range clusters {
if i == discon1 || i == discon2 {
continue
}
id := peer.Encode(c.ID(ctx).ID)
clusterIDs[id] = struct{}{}
}
Consensus: add new "crdt" consensus component This adds a new "crdt" consensus component using go-ds-crdt. This implies several refactors to fully make cluster consensus-component independent: * Delete mapstate and fully adopt dsstate (after people have migrated). * Return errors from state methods rather than ignoring them. * Add a new "datastore" modules so that we can configure datastores in the main configuration like other components. * Let the consensus components fully define the "state.State". Thus, they do not receive the state, they receive the storage where we put the state (a go-datastore). * Allow to customize how the monitor component obtains Peers() (the current peerset), including avoiding using the current peerset. At the moment the crdt consensus uses the monitoring component to define the current peerset. Therefore the monitor component cannot rely on the consensus component to produce a peerset. * Re-factor/re-implementation of "ipfs-cluster-service state" operations. Includes the dissapearance of the "migrate" one. The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite) and uses it to intitialize a dssate. Thus the crdt-store is elegantly wrapped. Any modifications to the state get automatically replicated to other peers. We store all the CRDT DAG blocks in the local datastore. The consensus components only expose a ReadOnly state, as any modifications to the shared state should happen through them. DHT and PubSub facilities must now be created outside of Cluster and passed in so they can be re-used by different components.
2019-02-20 14:24:25 +00:00
peerNum := nClusters
switch consensus {
case "crdt":
peerNum = nClusters - 2
}
validateClusterGraph(t, graph, clusterIDs, peerNum)
}
// Check that the pin is not re-assigned when a node
// that has disabled repinning goes down.
func TestClustersDisabledRepinning(t *testing.T) {
ctx := context.Background()
clusters, mock := createClusters(t)
defer shutdownClusters(t, clusters, mock)
for _, c := range clusters {
c.config.ReplicationFactorMin = nClusters - 1
c.config.ReplicationFactorMax = nClusters - 1
c.config.DisableRepinning = true
}
ttlDelay()
j := rand.Intn(nClusters)
h := test.Cid1
_, err := clusters[j].Pin(ctx, h, api.PinOptions{})
if err != nil {
t.Fatal(err)
}
// Let the pin arrive
pinDelay()
var killedClusterIndex int
// find someone that pinned it and kill that cluster
for i, c := range clusters {
pinfo := c.tracker.Status(ctx, h)
if pinfo.Status == api.TrackerStatusPinned {
killedClusterIndex = i
t.Logf("Shutting down %s", c.ID(ctx).ID)
c.Shutdown(ctx)
break
}
}
// let metrics expire and give time for the cluster to
// see if they have lost the leader
waitForLeaderAndMetrics(t, clusters)
// Make sure we haven't killed our randomly
// selected cluster
for j == killedClusterIndex {
j = rand.Intn(nClusters)
}
numPinned := 0
for i, c := range clusters {
if i == killedClusterIndex {
continue
}
pinfo := c.tracker.Status(ctx, h)
if pinfo.Status == api.TrackerStatusPinned {
//t.Log(pinfo.Peer.Pretty())
numPinned++
}
}
if numPinned != nClusters-2 {
t.Errorf("expected %d replicas for pin, got %d", nClusters-2, numPinned)
}
}
func TestRepoGC(t *testing.T) {
clusters, mock := createClusters(t)
defer shutdownClusters(t, clusters, mock)
f := func(t *testing.T, c *Cluster) {
gRepoGC, err := c.RepoGC(context.Background())
if err != nil {
t.Fatal("gc should have worked:", err)
}
if gRepoGC.PeerMap == nil {
t.Fatal("expected a non-nil peer map")
}
if len(gRepoGC.PeerMap) != nClusters {
t.Errorf("expected repo gc information for %d peer", nClusters)
}
for _, repoGC := range gRepoGC.PeerMap {
testRepoGC(t, repoGC)
}
}
runF(t, clusters, f)
}
func TestClustersFollowerMode(t *testing.T) {
ctx := context.Background()
clusters, mock := createClusters(t)
defer shutdownClusters(t, clusters, mock)
_, err := clusters[0].Pin(ctx, test.Cid1, api.PinOptions{})
if err != nil {
t.Fatal(err)
}
_, err = clusters[0].Pin(ctx, test.ErrorCid, api.PinOptions{})
if err != nil {
t.Fatal(err)
}
// Let the pins arrive
pinDelay()
// Set Cluster1 to follower mode
clusters[1].config.FollowerMode = true
t.Run("follower cannot pin", func(t *testing.T) {
_, err := clusters[1].PinPath(ctx, "/ipfs/"+test.Cid2.String(), api.PinOptions{})
if err != errFollowerMode {
t.Error("expected follower mode error")
}
_, err = clusters[1].Pin(ctx, test.Cid2, api.PinOptions{})
if err != errFollowerMode {
t.Error("expected follower mode error")
}
})
t.Run("follower cannot unpin", func(t *testing.T) {
_, err := clusters[1].UnpinPath(ctx, "/ipfs/"+test.Cid1.String())
if err != errFollowerMode {
t.Error("expected follower mode error")
}
_, err = clusters[1].Unpin(ctx, test.Cid1)
if err != errFollowerMode {
t.Error("expected follower mode error")
}
})
t.Run("follower cannot add", func(t *testing.T) {
sth := test.NewShardingTestHelper()
defer sth.Clean(t)
params := api.DefaultAddParams()
params.Shard = false
params.Name = "testlocal"
mfr, closer := sth.GetTreeMultiReader(t)
defer closer.Close()
r := multipart.NewReader(mfr, mfr.Boundary())
_, err = clusters[1].AddFile(r, params)
if err != errFollowerMode {
t.Error("expected follower mode error")
}
})
t.Run("follower status itself only", func(t *testing.T) {
gpi, err := clusters[1].Status(ctx, test.Cid1)
if err != nil {
t.Error("status should work")
}
if len(gpi.PeerMap) != 1 {
t.Fatal("globalPinInfo should only have one peer")
}
})
}
func TestClusterPinsWithExpiration(t *testing.T) {
ctx := context.Background()
clusters, mock := createClusters(t)
defer shutdownClusters(t, clusters, mock)
ttlDelay()
cl := clusters[rand.Intn(nClusters)] // choose a random cluster peer to query
c := test.Cid1
expireIn := 1 * time.Second
opts := api.PinOptions{
ExpireAt: time.Now().Add(expireIn),
}
_, err := cl.Pin(ctx, c, opts)
if err != nil {
t.Fatal("pin should have worked:", err)
}
pinDelay()
pins, err := cl.pinsSlice(ctx)
if err != nil {
t.Fatal(err)
}
if len(pins) != 1 {
t.Error("pin should be part of the state")
}
// wait till expiry time
time.Sleep(expireIn)
// manually call state sync on all peers, so we don't have to wait till
// state sync interval
for _, c := range clusters {
err = c.StateSync(ctx)
if err != nil {
t.Error(err)
}
}
pinDelay()
// state sync should have unpinned expired pin
pins, err = cl.pinsSlice(ctx)
if err != nil {
t.Fatal(err)
}
if len(pins) != 0 {
t.Error("pin should not be part of the state")
}
}
func TestClusterAlerts(t *testing.T) {
2021-01-13 21:23:51 +00:00
ctx := context.Background()
clusters, mock := createClusters(t)
defer shutdownClusters(t, clusters, mock)
2021-01-13 21:23:51 +00:00
if len(clusters) < 2 {
t.Skip("need at least 2 nodes for this test")
}
ttlDelay()
for _, c := range clusters[1:] {
c.Shutdown(ctx)
}
ttlDelay()
alerts := clusters[0].Alerts()
2021-01-13 21:23:51 +00:00
if len(alerts) == 0 {
t.Error("expected at least one alert")
}
}