ipfs-cluster/pstoremgr/pstoremgr.go
Hector Sanjuan 33d9cdd3c4 Feat: emancipate Consensus from the Cluster component
This commit promotes the Consensus component (and Raft) to become a fully
independent thing like other components, passed to NewCluster during
initialization. Cluster (main component) no longer creates the consensus
layer internally. This has triggered a number of breaking changes
that I will explain below.

Motivation: Future work will require the possibility of running Cluster
with a consensus layer that is not Raft. The "consensus" layer is in charge
of maintaining two things:
  * The current cluster peerset, as required by the implementation
  * The current cluster pinset (shared state)

While the pinset maintenance has always been in the consensus layer, the
peerset maintenance was handled by the main component (starting by the "peers"
key in the configuration) AND the Raft component (internally)
and this generated lots of confusion: if the user edited the peers in the
configuration they would be greeted with an error.

The bootstrap process (adding a peer to an existing cluster) and configuration
key also complicated many things, since the main component did it, but only
when the consensus was initialized and in single peer mode.

In all this we also mixed the peerstore (list of peer addresses in the libp2p
host) with the peerset, when they need not to be linked.

By initializing the consensus layer before calling NewCluster, all the
difficulties in maintaining the current implementation in the same way
have come to light. Thus, the following changes have been introduced:

* Remove "peers" and "bootstrap" keys from the configuration: we no longer
edit or save the configuration files. This was a very bad practice, requiring
write permissions by the process to the file containing the private key and
additionally made things like Puppet deployments of cluster difficult as
configuration would mutate from its initial version. Needless to say all the
maintenance associated to making sure peers and bootstrap had correct values
when peers are bootstrapped or removed. A loud and detailed error message has
been added when staring cluster with an old config, along with instructions on
how to move forward.

* Introduce a PeerstoreFile ("peerstore") which stores peer addresses: in
ipfs, the peerstore is not persisted because it can be re-built from the
network bootstrappers and the DHT. Cluster should probably also allow
discoverability of peers addresses (when not bootstrapping, as in that case
we have it), but in the meantime, we will read and persist the peerstore
addresses for cluster peers in this file, different from the configuration.
Note that dns multiaddresses are now fully supported and no IPs are saved
when we have DNS multiaddresses for a peer.

* The former "peer_manager" code is now a pstoremgr module, providing utilities
to parse, add, list and generally maintain the libp2p host peerstore, including
operations on the PeerstoreFile. This "pstoremgr" can now also be extended to
perform address autodiscovery and other things indepedently from Cluster.

* Create and initialize Raft outside of the main Cluster component: since we
can now launch Raft independently from Cluster, we have more degrees of
freedom. A new "staging" option when creating the object allows a raft peer to
be launched in Staging mode, waiting to be added to a running consensus, and
thus, not electing itself as leader or doing anything like we were doing
before. This additionally allows us to track when the peer has become a
Voter, which only happens when it's caught up with the state, something that
was wonky previously.

* The raft configuration now includes an InitPeerset key, which allows to
provide a peerset for new peers and which is ignored when staging==true. The
whole Raft initialization code is way cleaner and stronger now.

* Cluster peer bootsrapping is now an ipfs-cluster-service feature. The
--bootstrap flag works as before (additionally allowing comma-separated-list
of entries). What bootstrap does, is to initialize Raft with staging == true,
and then call Join in the main cluster component. Only when the Raft peer
transitions to Voter, consensus becomes ready, and cluster becomes Ready.
This is cleaner, works better and is less complex than before (supporting
both flags and config values). We also backup and clean the state whenever
we are boostrapping, automatically

* ipfs-cluster-service no longer runs the daemon. Starting cluster needs
now "ipfs-cluster-service daemon". The daemon specific flags (bootstrap,
alloc) are now flags for the daemon subcommand. Here we mimic ipfs ("ipfs"
does not start the daemon but print help) and pave the path for merging both
service and ctl in the future.

While this brings some breaking changes, it significantly reduces the
complexity of the configuration, the code and most importantly, the
documentation. It should be easier now to explain the user what is the
right way to launch a cluster peer, and more difficult to make mistakes.

As a side effect, the PR also:

* Fixes #381 - peers with dynamic addresses
* Fixes #371 - peers should be Raft configuration option
* Fixes #378 - waitForUpdates may return before state fully synced
* Fixes #235 - config option shadowing (no cfg saves, no need to shadow)

License: MIT
Signed-off-by: Hector Sanjuan <code@hector.link>
2018-05-07 07:39:41 +02:00

232 lines
5.9 KiB
Go

// Package pstoremgr provides a Manager that simplifies handling
// addition, listing and removal of cluster peer multiaddresses from
// the libp2p Host. This includes resolving DNS addresses, decapsulating
// and encapsulating the /p2p/ (/ipfs/) protocol as needed, listing, saving
// and loading addresses.
package pstoremgr
import (
"bufio"
"context"
"fmt"
"os"
"sync"
"time"
"github.com/ipfs/ipfs-cluster/api"
logging "github.com/ipfs/go-log"
host "github.com/libp2p/go-libp2p-host"
peer "github.com/libp2p/go-libp2p-peer"
peerstore "github.com/libp2p/go-libp2p-peerstore"
ma "github.com/multiformats/go-multiaddr"
madns "github.com/multiformats/go-multiaddr-dns"
)
var logger = logging.Logger("pstoremgr")
// Timeouts for network operations triggered by the Manager
var (
DNSTimeout = 2 * time.Second
ConnectTimeout = 10 * time.Second
)
// Manager provides utilities for handling cluster peer addresses
// and storing them in a libp2p Host peerstore.
type Manager struct {
ctx context.Context
host host.Host
peerstoreLock sync.Mutex
peerstorePath string
}
// New creates a Manager with the given libp2p Host and peerstorePath.
// The path indicates the place to persist and read peer addresses from.
// If empty, these operations (LoadPeerstore, SavePeerstore) will no-op.
func New(h host.Host, peerstorePath string) *Manager {
return &Manager{
ctx: context.Background(),
host: h,
peerstorePath: peerstorePath,
}
}
// ImportPeer adds a new peer address to the host's peerstore, optionally
// dialing to it. It will resolve any DNS multiaddresses before adding them.
// The address is expected to include the /ipfs/<peerID> protocol part.
func (pm *Manager) ImportPeer(addr ma.Multiaddr, connect bool) error {
if pm.host == nil {
return nil
}
logger.Debugf("adding peer address %s", addr)
pid, decapAddr, err := api.Libp2pMultiaddrSplit(addr)
if err != nil {
return err
}
pm.host.Peerstore().AddAddr(pid, decapAddr, peerstore.PermanentAddrTTL)
// dns multiaddresses need to be resolved because libp2p only does that
// on explicit bhost.Connect().
if madns.Matches(addr) {
ctx, cancel := context.WithTimeout(pm.ctx, DNSTimeout)
defer cancel()
resolvedAddrs, err := madns.Resolve(ctx, addr)
if err != nil {
logger.Error(err)
return err
}
pm.ImportPeers(resolvedAddrs, connect)
}
if connect {
ctx, cancel := context.WithTimeout(pm.ctx, ConnectTimeout)
defer cancel()
pm.host.Network().DialPeer(ctx, pid)
}
return nil
}
// RmPeer clear all addresses for a given peer ID from the host's peerstore.
func (pm *Manager) RmPeer(pid peer.ID) error {
if pm.host == nil {
return nil
}
logger.Debugf("forgetting peer %s", pid.Pretty())
pm.host.Peerstore().ClearAddrs(pid)
return nil
}
// if the peer has dns addresses, return only those, otherwise
// return all. In all cases, encapsulate the peer ID.
func (pm *Manager) filteredPeerAddrs(p peer.ID) []ma.Multiaddr {
all := pm.host.Peerstore().Addrs(p)
peerAddrs := []ma.Multiaddr{}
peerDNSAddrs := []ma.Multiaddr{}
peerPart, _ := ma.NewMultiaddr(fmt.Sprintf("/ipfs/%s", peer.IDB58Encode(p)))
for _, a := range all {
encAddr := a.Encapsulate(peerPart)
if madns.Matches(encAddr) {
peerDNSAddrs = append(peerDNSAddrs, encAddr)
} else {
peerAddrs = append(peerAddrs, encAddr)
}
}
if len(peerDNSAddrs) > 0 {
return peerDNSAddrs
}
return peerAddrs
}
// PeersAddresses returns the list of multiaddresses (encapsulating the
// /ipfs/<peerID> part) for the given set of peers. For peers for which
// we know DNS multiaddresses, we only return those. Otherwise, we return
// all the multiaddresses known for that peer.
func (pm *Manager) PeersAddresses(peers []peer.ID) []ma.Multiaddr {
if pm.host == nil {
return nil
}
if peers == nil {
return nil
}
var addrs []ma.Multiaddr
for _, p := range peers {
if p == pm.host.ID() {
continue
}
addrs = append(addrs, pm.filteredPeerAddrs(p)...)
}
return addrs
}
// ImportPeers calls ImportPeer for every address in the given slice, using the
// given connect parameter.
func (pm *Manager) ImportPeers(addrs []ma.Multiaddr, connect bool) error {
for _, a := range addrs {
pm.ImportPeer(a, connect)
}
return nil
}
// ImportPeersFromPeerstore reads the peerstore file and calls ImportPeers with
// the addresses obtained from it.
func (pm *Manager) ImportPeersFromPeerstore(connect bool) error {
return pm.ImportPeers(pm.LoadPeerstore(), connect)
}
// LoadPeerstore parses the peerstore file and returns the list
// of addresses read from it.
func (pm *Manager) LoadPeerstore() (addrs []ma.Multiaddr) {
if pm.peerstorePath == "" {
return
}
pm.peerstoreLock.Lock()
defer pm.peerstoreLock.Unlock()
f, err := os.Open(pm.peerstorePath)
if err != nil {
return // nothing to load
}
defer f.Close()
scanner := bufio.NewScanner(f)
for scanner.Scan() {
addrStr := scanner.Text()
if addrStr[0] != '/' {
// skip anything that is not going to be a multiaddress
continue
}
addr, err := ma.NewMultiaddr(addrStr)
if err != nil {
logger.Error(
"error parsing multiaddress from %s: %s",
pm.peerstorePath,
err,
)
}
addrs = append(addrs, addr)
}
if err := scanner.Err(); err != nil {
logger.Errorf("reading %s: %s", pm.peerstorePath, err)
}
return addrs
}
// SavePeerstore stores a slice of multiaddresses in the peerstore file, one
// per line.
func (pm *Manager) SavePeerstore(addrs []ma.Multiaddr) {
if pm.peerstorePath == "" {
return
}
pm.peerstoreLock.Lock()
defer pm.peerstoreLock.Unlock()
f, err := os.Create(pm.peerstorePath)
if err != nil {
logger.Errorf(
"could not save peer addresses to %s: %s",
pm.peerstorePath,
err,
)
return
}
defer f.Close()
for _, a := range addrs {
f.Write([]byte(fmt.Sprintf("%s\n", a.String())))
}
}
// SavePeerstoreForPeers calls PeersAddresses and then saves the peerstore
// file using the result.
func (pm *Manager) SavePeerstoreForPeers(peers []peer.ID) {
pm.SavePeerstore(pm.PeersAddresses(peers))
}