ipfs-cluster/cluster.go
Hector Sanjuan ab1cc47d75 Fix #97: Assume default DataFolder as subfolder to config folder when empty.
We no longer set ConsensusDataFolder. We leave it empty (and ommited from the
configuration). When not set, it will take the path from which the configuration
file was read and use an "ipfs-cluster-data" subfolder in that path.

When set, the behaviour is just as before (ensures backwards compatiblity).

This will facilitate re-use of configuration files, for example, when mounting
them inside docker.

License: MIT
Signed-off-by: Hector Sanjuan <hector@protocol.ai>
2017-07-18 11:36:24 +02:00

1208 lines
30 KiB
Go

package ipfscluster
import (
"context"
"errors"
"fmt"
"os"
"path/filepath"
"strings"
"sync"
"time"
"github.com/ipfs/ipfs-cluster/api"
"github.com/ipfs/ipfs-cluster/consensus/raft"
"github.com/ipfs/ipfs-cluster/state"
pnet "github.com/libp2p/go-libp2p-pnet"
rpc "github.com/hsanjuan/go-libp2p-gorpc"
cid "github.com/ipfs/go-cid"
host "github.com/libp2p/go-libp2p-host"
ipnet "github.com/libp2p/go-libp2p-interface-pnet"
peer "github.com/libp2p/go-libp2p-peer"
peerstore "github.com/libp2p/go-libp2p-peerstore"
swarm "github.com/libp2p/go-libp2p-swarm"
basichost "github.com/libp2p/go-libp2p/p2p/host/basic"
ma "github.com/multiformats/go-multiaddr"
)
// Cluster is the main IPFS cluster component. It provides
// the go-API for it and orchestrates the components that make up the system.
type Cluster struct {
ctx context.Context
cancel func()
id peer.ID
config *Config
host host.Host
rpcServer *rpc.Server
rpcClient *rpc.Client
peerManager *peerManager
consensus Consensus
api API
ipfs IPFSConnector
state state.State
tracker PinTracker
monitor PeerMonitor
allocator PinAllocator
informer Informer
shutdownLock sync.Mutex
shutdown bool
doneCh chan struct{}
readyCh chan struct{}
wg sync.WaitGroup
paMux sync.Mutex
}
// NewCluster builds a new IPFS Cluster peer. It initializes a LibP2P host,
// creates and RPC Server and client and sets up all components.
//
// The new cluster peer may still be performing initialization tasks when
// this call returns (consensus may still be bootstrapping). Use Cluster.Ready()
// if you need to wait until the peer is fully up.
func NewCluster(
cfg *Config,
api API,
ipfs IPFSConnector,
st state.State,
tracker PinTracker,
monitor PeerMonitor,
allocator PinAllocator,
informer Informer) (*Cluster, error) {
ctx, cancel := context.WithCancel(context.Background())
host, err := makeHost(ctx, cfg)
if err != nil {
cancel()
return nil, err
}
logger.Infof("IPFS Cluster v%s listening on:", Version)
for _, addr := range host.Addrs() {
logger.Infof(" %s/ipfs/%s", addr, host.ID().Pretty())
}
c := &Cluster{
ctx: ctx,
cancel: cancel,
id: host.ID(),
config: cfg,
host: host,
api: api,
ipfs: ipfs,
state: st,
tracker: tracker,
monitor: monitor,
allocator: allocator,
informer: informer,
doneCh: make(chan struct{}),
readyCh: make(chan struct{}),
}
c.setupPeerManager()
err = c.setupRPC()
if err != nil {
c.Shutdown()
return nil, err
}
err = c.setupConsensus()
if err != nil {
c.Shutdown()
return nil, err
}
c.setupRPCClients()
ok := c.bootstrap()
if !ok {
logger.Error("Bootstrap unsuccessful")
c.Shutdown()
return nil, errors.New("bootstrap unsuccessful")
}
go func() {
c.ready()
c.run()
}()
return c, nil
}
func (c *Cluster) setupPeerManager() {
pm := newPeerManager(c)
c.peerManager = pm
if len(c.config.ClusterPeers) > 0 {
c.peerManager.addFromMultiaddrs(c.config.ClusterPeers)
} else {
c.peerManager.addFromMultiaddrs(c.config.Bootstrap)
}
}
func (c *Cluster) setupRPC() error {
rpcServer := rpc.NewServer(c.host, RPCProtocol)
err := rpcServer.RegisterName("Cluster", &RPCAPI{c})
if err != nil {
return err
}
c.rpcServer = rpcServer
rpcClient := rpc.NewClientWithServer(c.host, RPCProtocol, rpcServer)
c.rpcClient = rpcClient
return nil
}
func (c *Cluster) setupConsensus() error {
var startPeers []peer.ID
if len(c.config.ClusterPeers) > 0 {
startPeers = peersFromMultiaddrs(c.config.ClusterPeers)
} else {
startPeers = peersFromMultiaddrs(c.config.Bootstrap)
}
dataFolder := c.config.ConsensusDataFolder
if dataFolder == "" {
dataFolder = filepath.Join(filepath.Dir(c.config.path), DefaultDataFolder)
}
consensus, err := raft.NewConsensus(
append(startPeers, c.id),
c.host,
dataFolder,
c.state)
if err != nil {
logger.Errorf("error creating consensus: %s", err)
return err
}
c.consensus = consensus
return nil
}
func (c *Cluster) setupRPCClients() {
c.tracker.SetClient(c.rpcClient)
c.ipfs.SetClient(c.rpcClient)
c.api.SetClient(c.rpcClient)
c.consensus.SetClient(c.rpcClient)
c.monitor.SetClient(c.rpcClient)
c.allocator.SetClient(c.rpcClient)
c.informer.SetClient(c.rpcClient)
}
// syncWatcher loops and triggers StateSync and SyncAllLocal from time to time
func (c *Cluster) syncWatcher() {
stateSyncTicker := time.NewTicker(
time.Duration(c.config.StateSyncSeconds) * time.Second)
syncTicker := time.NewTicker(
time.Duration(c.config.IPFSSyncSeconds) * time.Second)
for {
select {
case <-stateSyncTicker.C:
logger.Debug("auto-triggering StateSync()")
c.StateSync()
case <-syncTicker.C:
logger.Debug("auto-triggering SyncAllLocal()")
c.SyncAllLocal()
case <-c.ctx.Done():
stateSyncTicker.Stop()
return
}
}
}
func (c *Cluster) broadcastMetric(m api.Metric) error {
peers := c.peerManager.peers()
leader, err := c.consensus.Leader()
if err != nil {
return err
}
if leader == c.id {
// Leader needs to broadcast its metric to everyone
// in case it goes down (new leader will have to detect this node went down)
errs := c.multiRPC(peers,
"Cluster",
"PeerMonitorLogMetric",
m,
copyEmptyStructToIfaces(make([]struct{}, len(peers), len(peers))))
for i, e := range errs {
if e != nil {
logger.Errorf("error pushing metric to %s: %s", peers[i].Pretty(), e)
}
}
} else {
// non-leaders just need to forward their metrics to the leader
err := c.rpcClient.Call(leader,
"Cluster", "PeerMonitorLogMetric",
m, &struct{}{})
if err != nil {
logger.Error(err)
return err
}
}
logger.Debugf("sent metric %s", m.Name)
return nil
}
// push metrics loops and pushes metrics to the leader's monitor
func (c *Cluster) pushInformerMetrics() {
timer := time.NewTimer(0) // fire immediately first
for {
select {
case <-c.ctx.Done():
return
case <-timer.C:
// wait
}
metric := c.informer.GetMetric()
metric.Peer = c.id
err := c.broadcastMetric(metric)
if err != nil {
logger.Errorf("error broadcasting metric: %s", err)
// retry in 1 second
timer.Stop()
timer.Reset(500 * time.Millisecond)
continue
}
timer.Stop() // no need to drain C if we are here
timer.Reset(metric.GetTTL() / 2)
}
}
func (c *Cluster) pushPingMetrics() {
ticker := time.NewTicker(time.Second * time.Duration(c.config.MonitoringIntervalSeconds))
for {
metric := api.Metric{
Name: "ping",
Peer: c.id,
Valid: true,
}
metric.SetTTL(c.config.MonitoringIntervalSeconds * 2)
c.broadcastMetric(metric)
select {
case <-c.ctx.Done():
return
case <-ticker.C:
}
}
}
// read the alerts channel from the monitor and triggers repins
func (c *Cluster) alertsHandler() {
for {
select {
case <-c.ctx.Done():
return
case alrt := <-c.monitor.Alerts():
// only the leader handles alerts
leader, err := c.consensus.Leader()
if err == nil && leader == c.id {
logger.Warningf("Received alert for %s in %s", alrt.MetricName, alrt.Peer.Pretty())
switch alrt.MetricName {
case "ping":
c.repinFromPeer(alrt.Peer)
}
}
}
}
}
// find all Cids pinned to a given peer and triggers re-pins on them.
func (c *Cluster) repinFromPeer(p peer.ID) {
cState, err := c.consensus.State()
if err != nil {
logger.Warning(err)
return
}
list := cState.List()
for _, pin := range list {
if containsPeer(pin.Allocations, p) {
logger.Infof("repinning %s out of %s", pin.Cid, p.Pretty())
c.pin(pin, []peer.ID{p}) // pin blacklisting this peer
}
}
}
// run provides a cancellable context and launches some goroutines
// before signaling readyCh
func (c *Cluster) run() {
go c.syncWatcher()
go c.pushPingMetrics()
go c.pushInformerMetrics()
go c.alertsHandler()
}
func (c *Cluster) ready() {
// We bootstrapped first because with dirty state consensus
// may have a peerset and not find a leader so we cannot wait
// for it.
timer := time.NewTimer(30 * time.Second)
select {
case <-timer.C:
logger.Error("consensus start timed out")
c.Shutdown()
return
case <-c.consensus.Ready():
case <-c.ctx.Done():
return
}
// Cluster is ready.
logger.Info("Cluster Peers (not including ourselves):")
peers := c.peerManager.peersAddrs()
if len(peers) == 0 {
logger.Info(" - No other peers")
}
for _, a := range c.peerManager.peersAddrs() {
logger.Infof(" - %s", a)
}
close(c.readyCh)
logger.Info("IPFS Cluster is ready")
}
func (c *Cluster) bootstrap() bool {
// Cases in which we do not bootstrap
if len(c.config.Bootstrap) == 0 || len(c.config.ClusterPeers) > 0 {
return true
}
for _, b := range c.config.Bootstrap {
logger.Infof("Bootstrapping to %s", b)
err := c.Join(b)
if err == nil {
return true
}
logger.Error(err)
}
return false
}
// Ready returns a channel which signals when this peer is
// fully initialized (including consensus).
func (c *Cluster) Ready() <-chan struct{} {
return c.readyCh
}
// Shutdown stops the IPFS cluster components
func (c *Cluster) Shutdown() error {
c.shutdownLock.Lock()
defer c.shutdownLock.Unlock()
if c.shutdown {
logger.Warning("Cluster is already shutdown")
return nil
}
logger.Info("shutting down IPFS Cluster")
if c.config.LeaveOnShutdown {
// best effort
logger.Warning("Attempting to leave Cluster. This may take some seconds")
err := c.consensus.LogRmPeer(c.id)
if err != nil {
logger.Error("leaving cluster: " + err.Error())
} else {
time.Sleep(2 * time.Second)
}
c.peerManager.resetPeers()
}
// Cancel contexts
c.cancel()
if con := c.consensus; con != nil {
if err := con.Shutdown(); err != nil {
logger.Errorf("error stopping consensus: %s", err)
return err
}
}
c.peerManager.savePeers()
c.backupState()
if err := c.monitor.Shutdown(); err != nil {
logger.Errorf("error stopping monitor: %s", err)
return err
}
if err := c.api.Shutdown(); err != nil {
logger.Errorf("error stopping API: %s", err)
return err
}
if err := c.ipfs.Shutdown(); err != nil {
logger.Errorf("error stopping IPFS Connector: %s", err)
return err
}
if err := c.tracker.Shutdown(); err != nil {
logger.Errorf("error stopping PinTracker: %s", err)
return err
}
c.wg.Wait()
c.host.Close() // Shutdown all network services
c.shutdown = true
close(c.doneCh)
return nil
}
// Done provides a way to learn if the Peer has been shutdown
// (for example, because it has been removed from the Cluster)
func (c *Cluster) Done() <-chan struct{} {
return c.doneCh
}
// ID returns information about the Cluster peer
func (c *Cluster) ID() api.ID {
// ignore error since it is included in response object
ipfsID, _ := c.ipfs.ID()
var addrs []ma.Multiaddr
addrsSet := make(map[string]struct{}) // to filter dups
for _, addr := range c.host.Addrs() {
addrsSet[addr.String()] = struct{}{}
}
for k := range addrsSet {
addr, _ := ma.NewMultiaddr(k)
addrs = append(addrs, multiaddrJoin(addr, c.id))
}
return api.ID{
ID: c.id,
//PublicKey: c.host.Peerstore().PubKey(c.id),
Addresses: addrs,
ClusterPeers: c.peerManager.peersAddrs(),
Version: Version,
Commit: Commit,
RPCProtocolVersion: RPCProtocol,
IPFS: ipfsID,
}
}
// PeerAdd adds a new peer to this Cluster.
//
// The new peer must be reachable. It will be added to the
// consensus and will receive the shared state (including the
// list of peers). The new peer should be a single-peer cluster,
// preferable without any relevant state.
func (c *Cluster) PeerAdd(addr ma.Multiaddr) (api.ID, error) {
// starting 10 nodes on the same box for testing
// causes deadlock and a global lock here
// seems to help.
c.paMux.Lock()
defer c.paMux.Unlock()
logger.Debugf("peerAdd called with %s", addr)
pid, decapAddr, err := multiaddrSplit(addr)
if err != nil {
id := api.ID{
Error: err.Error(),
}
return id, err
}
// Figure out its real address if we have one
remoteAddr := getRemoteMultiaddr(c.host, pid, decapAddr)
err = c.peerManager.addPeer(remoteAddr)
if err != nil {
logger.Error(err)
id := api.ID{ID: pid, Error: err.Error()}
return id, err
}
// Figure out our address to that peer. This also
// ensures that it is reachable
var addrSerial api.MultiaddrSerial
err = c.rpcClient.Call(pid, "Cluster",
"RemoteMultiaddrForPeer", c.id, &addrSerial)
if err != nil {
logger.Error(err)
id := api.ID{ID: pid, Error: err.Error()}
c.peerManager.rmPeer(pid, false)
return id, err
}
// Log the new peer in the log so everyone gets it.
err = c.consensus.LogAddPeer(remoteAddr)
if err != nil {
logger.Error(err)
id := api.ID{ID: pid, Error: err.Error()}
c.peerManager.rmPeer(pid, false)
return id, err
}
// Send cluster peers to the new peer.
clusterPeers := append(c.peerManager.peersAddrs(),
addrSerial.ToMultiaddr())
err = c.rpcClient.Call(pid,
"Cluster",
"PeerManagerAddFromMultiaddrs",
api.MultiaddrsToSerial(clusterPeers),
&struct{}{})
if err != nil {
logger.Error(err)
}
// Ask the new peer to connect its IPFS daemon to the rest
err = c.rpcClient.Call(pid,
"Cluster",
"IPFSConnectSwarms",
struct{}{},
&struct{}{})
if err != nil {
logger.Error(err)
}
id, err := c.getIDForPeer(pid)
return id, nil
}
// PeerRemove removes a peer from this Cluster.
//
// The peer will be removed from the consensus peer set,
// it will be shut down after this happens.
func (c *Cluster) PeerRemove(pid peer.ID) error {
if !c.peerManager.isPeer(pid) {
return fmt.Errorf("%s is not a peer", pid.Pretty())
}
// The peer is no longer among the peer set, so we can re-allocate
// any CIDs associated to it.
logger.Infof("Re-allocating all CIDs directly associated to %s", pid)
c.repinFromPeer(pid)
err := c.consensus.LogRmPeer(pid)
if err != nil {
logger.Error(err)
return err
}
// This is a best effort. It may fail
// if that peer is down
err = c.rpcClient.Call(pid,
"Cluster",
"PeerManagerRmPeerShutdown",
pid,
&struct{}{})
if err != nil {
logger.Error(err)
}
return nil
}
// Join adds this peer to an existing cluster. The calling peer should
// be a single-peer cluster node. This is almost equivalent to calling
// PeerAdd on the destination cluster.
func (c *Cluster) Join(addr ma.Multiaddr) error {
logger.Debugf("Join(%s)", addr)
//if len(c.peerManager.peers()) > 1 {
// logger.Error(c.peerManager.peers())
// return errors.New("only single-node clusters can be joined")
//}
pid, _, err := multiaddrSplit(addr)
if err != nil {
logger.Error(err)
return err
}
// Bootstrap to myself
if pid == c.id {
return nil
}
// Add peer to peerstore so we can talk to it
c.peerManager.addPeer(addr)
// Note that PeerAdd() on the remote peer will
// figure out what our real address is (obviously not
// ClusterAddr).
var myID api.IDSerial
err = c.rpcClient.Call(pid,
"Cluster",
"PeerAdd",
api.MultiaddrToSerial(multiaddrJoin(c.config.ClusterAddr, c.id)),
&myID)
if err != nil {
logger.Error(err)
return err
}
// wait for leader and for state to catch up
// then sync
err = c.consensus.WaitForSync()
if err != nil {
logger.Error(err)
return err
}
c.StateSync()
logger.Infof("joined %s's cluster", addr)
return nil
}
// StateSync syncs the consensus state to the Pin Tracker, ensuring
// that every Cid that should be tracked is tracked. It returns
// PinInfo for Cids which were added or deleted.
func (c *Cluster) StateSync() ([]api.PinInfo, error) {
cState, err := c.consensus.State()
if err != nil {
return nil, err
}
logger.Debug("syncing state to tracker")
clusterPins := cState.List()
var changed []*cid.Cid
// Track items which are not tracked
for _, pin := range clusterPins {
if c.tracker.Status(pin.Cid).Status == api.TrackerStatusUnpinned {
changed = append(changed, pin.Cid)
go c.tracker.Track(pin)
}
}
// Untrack items which should not be tracked
for _, p := range c.tracker.StatusAll() {
if !cState.Has(p.Cid) {
changed = append(changed, p.Cid)
go c.tracker.Untrack(p.Cid)
}
}
var infos []api.PinInfo
for _, h := range changed {
infos = append(infos, c.tracker.Status(h))
}
return infos, nil
}
// StatusAll returns the GlobalPinInfo for all tracked Cids. If an error
// happens, the slice will contain as much information as could be fetched.
func (c *Cluster) StatusAll() ([]api.GlobalPinInfo, error) {
return c.globalPinInfoSlice("TrackerStatusAll")
}
// Status returns the GlobalPinInfo for a given Cid. If an error happens,
// the GlobalPinInfo should contain as much information as could be fetched.
func (c *Cluster) Status(h *cid.Cid) (api.GlobalPinInfo, error) {
return c.globalPinInfoCid("TrackerStatus", h)
}
// SyncAllLocal makes sure that the current state for all tracked items
// matches the state reported by the IPFS daemon.
//
// SyncAllLocal returns the list of PinInfo that where updated because of
// the operation, along with those in error states.
func (c *Cluster) SyncAllLocal() ([]api.PinInfo, error) {
syncedItems, err := c.tracker.SyncAll()
// Despite errors, tracker provides synced items that we can provide.
// They encapsulate the error.
if err != nil {
logger.Error("tracker.Sync() returned with error: ", err)
logger.Error("Is the ipfs daemon running?")
}
return syncedItems, err
}
// SyncLocal performs a local sync operation for the given Cid. This will
// tell the tracker to verify the status of the Cid against the IPFS daemon.
// It returns the updated PinInfo for the Cid.
func (c *Cluster) SyncLocal(h *cid.Cid) (api.PinInfo, error) {
var err error
pInfo, err := c.tracker.Sync(h)
// Despite errors, trackers provides an updated PinInfo so
// we just log it.
if err != nil {
logger.Error("tracker.SyncCid() returned with error: ", err)
logger.Error("Is the ipfs daemon running?")
}
return pInfo, err
}
// SyncAll triggers LocalSync() operations in all cluster peers.
func (c *Cluster) SyncAll() ([]api.GlobalPinInfo, error) {
return c.globalPinInfoSlice("SyncAllLocal")
}
// Sync triggers a LocalSyncCid() operation for a given Cid
// in all cluster peers.
func (c *Cluster) Sync(h *cid.Cid) (api.GlobalPinInfo, error) {
return c.globalPinInfoCid("SyncLocal", h)
}
// RecoverLocal triggers a recover operation for a given Cid
func (c *Cluster) RecoverLocal(h *cid.Cid) (api.PinInfo, error) {
return c.tracker.Recover(h)
}
// Recover triggers a recover operation for a given Cid in all
// cluster peers.
func (c *Cluster) Recover(h *cid.Cid) (api.GlobalPinInfo, error) {
return c.globalPinInfoCid("TrackerRecover", h)
}
// Pins returns the list of Cids managed by Cluster and which are part
// of the current global state. This is the source of truth as to which
// pins are managed and their allocation, but does not indicate if
// the item is successfully pinned. For that, use StatusAll().
func (c *Cluster) Pins() []api.Pin {
cState, err := c.consensus.State()
if err != nil {
logger.Error(err)
return []api.Pin{}
}
return cState.List()
}
// PinGet returns information for a single Cid managed by Cluster.
// The information is obtained from the current global state. The
// returned api.Pin provides information about the allocations
// assigned for the requested Cid, but does not provide indicate if
// the item is successfully pinned. For that, use Status(). PinGet
// returns an error if the given Cid is not part of the global state.
func (c *Cluster) PinGet(h *cid.Cid) (api.Pin, error) {
cState, err := c.consensus.State()
if err != nil {
logger.Error(err)
return api.Pin{}, err
}
pin := cState.Get(h)
if pin.Cid == nil {
return pin, errors.New("Cid is not part of the global state")
}
return pin, nil
}
// Pin makes the cluster Pin a Cid. This implies adding the Cid
// to the IPFS Cluster peers shared-state. Depending on the cluster
// pinning strategy, the PinTracker may then request the IPFS daemon
// to pin the Cid.
//
// Pin returns an error if the operation could not be persisted
// to the global state. Pin does not reflect the success or failure
// of underlying IPFS daemon pinning operations.
func (c *Cluster) Pin(pin api.Pin) error {
return c.pin(pin, []peer.ID{})
}
// pin performs the actual pinning and supports a blacklist to be
// able to evacuate a node.
func (c *Cluster) pin(pin api.Pin, blacklist []peer.ID) error {
rpl := pin.ReplicationFactor
if rpl == 0 {
rpl = c.config.ReplicationFactor
pin.ReplicationFactor = rpl
}
switch {
case rpl == 0:
return errors.New("replication factor is 0")
case rpl < 0:
pin.Allocations = []peer.ID{}
logger.Infof("IPFS cluster pinning %s everywhere:", pin.Cid)
case rpl > 0:
allocs, err := c.allocate(pin.Cid, pin.ReplicationFactor, blacklist)
if err != nil {
return err
}
pin.Allocations = allocs
logger.Infof("IPFS cluster pinning %s on %s:", pin.Cid, pin.Allocations)
}
err := c.consensus.LogPin(pin)
if err != nil {
return err
}
return nil
}
// Unpin makes the cluster Unpin a Cid. This implies adding the Cid
// to the IPFS Cluster peers shared-state.
//
// Unpin returns an error if the operation could not be persisted
// to the global state. Unpin does not reflect the success or failure
// of underlying IPFS daemon unpinning operations.
func (c *Cluster) Unpin(h *cid.Cid) error {
logger.Info("IPFS cluster unpinning:", h)
pin := api.Pin{
Cid: h,
}
err := c.consensus.LogUnpin(pin)
if err != nil {
return err
}
return nil
}
// Version returns the current IPFS Cluster version
func (c *Cluster) Version() string {
return Version
}
// Peers returns the IDs of the members of this Cluster
func (c *Cluster) Peers() []api.ID {
members := c.peerManager.peers()
peersSerial := make([]api.IDSerial, len(members), len(members))
peers := make([]api.ID, len(members), len(members))
errs := c.multiRPC(members, "Cluster", "ID", struct{}{},
copyIDSerialsToIfaces(peersSerial))
for i, err := range errs {
if err != nil {
peersSerial[i].ID = peer.IDB58Encode(members[i])
peersSerial[i].Error = err.Error()
}
}
for i, ps := range peersSerial {
peers[i] = ps.ToID()
}
return peers
}
// makeHost makes a libp2p-host
func makeHost(ctx context.Context, cfg *Config) (host.Host, error) {
ps := peerstore.NewPeerstore()
privateKey := cfg.PrivateKey
publicKey := privateKey.GetPublic()
var protec ipnet.Protector
if len(cfg.ClusterSecret) != 0 {
var err error
clusterKey, err := clusterSecretToKey(cfg.ClusterSecret)
if err != nil {
return nil, err
}
protec, err = pnet.NewProtector(strings.NewReader(clusterKey))
if err != nil {
return nil, err
}
// this is in go-ipfs, not sure whether we want something like it here
/* go func() {
t := time.NewTicker(30 * time.Second)
<-t.C // swallow one tick
for {
select {
case <-t.C:
if ph := cfg.Host; ph != nil {
if len(ph.Network().Peers()) == 0 {
log.Warning("We are in a private network and have no peers.")
log.Warning("This might be a configuration mistake.")
}
}
case <-n.Process().Closing:
t.Stop()
return
}
}
}()*/
}
if err := ps.AddPubKey(cfg.ID, publicKey); err != nil {
return nil, err
}
if err := ps.AddPrivKey(cfg.ID, privateKey); err != nil {
return nil, err
}
network, err := swarm.NewNetworkWithProtector(
ctx,
[]ma.Multiaddr{cfg.ClusterAddr},
cfg.ID,
ps,
protec,
nil,
)
if err != nil {
return nil, err
}
bhost := basichost.New(network)
return bhost, nil
}
// Perform an RPC request to multiple destinations
func (c *Cluster) multiRPC(dests []peer.ID, svcName, svcMethod string, args interface{}, reply []interface{}) []error {
if len(dests) != len(reply) {
panic("must have matching dests and replies")
}
var wg sync.WaitGroup
errs := make([]error, len(dests), len(dests))
for i := range dests {
wg.Add(1)
go func(i int) {
defer wg.Done()
err := c.rpcClient.Call(
dests[i],
svcName,
svcMethod,
args,
reply[i])
errs[i] = err
}(i)
}
wg.Wait()
return errs
}
func (c *Cluster) globalPinInfoCid(method string, h *cid.Cid) (api.GlobalPinInfo, error) {
pin := api.GlobalPinInfo{
Cid: h,
PeerMap: make(map[peer.ID]api.PinInfo),
}
members := c.peerManager.peers()
replies := make([]api.PinInfoSerial, len(members), len(members))
arg := api.Pin{
Cid: h,
}
errs := c.multiRPC(members,
"Cluster",
method, arg.ToSerial(),
copyPinInfoSerialToIfaces(replies))
for i, rserial := range replies {
e := errs[i]
// Potentially rserial is empty. But ToPinInfo ignores all
// errors from underlying libraries. In that case .Status
// will be TrackerStatusBug (0)
r := rserial.ToPinInfo()
// No error. Parse and continue
if e == nil {
pin.PeerMap[members[i]] = r
continue
}
// Deal with error cases (err != nil): wrap errors in PinInfo
// In this case, we had no answer at all. The contacted peer
// must be offline or unreachable.
if r.Status == api.TrackerStatusBug {
logger.Errorf("%s: error in broadcast response from %s: %s ", c.id, members[i], e)
pin.PeerMap[members[i]] = api.PinInfo{
Cid: h,
Peer: members[i],
Status: api.TrackerStatusClusterError,
TS: time.Now(),
Error: e.Error(),
}
} else { // there was an rpc error, but got a valid response :S
r.Error = e.Error()
pin.PeerMap[members[i]] = r
// unlikely to come down this path
}
}
return pin, nil
}
func (c *Cluster) globalPinInfoSlice(method string) ([]api.GlobalPinInfo, error) {
var infos []api.GlobalPinInfo
fullMap := make(map[string]api.GlobalPinInfo)
members := c.peerManager.peers()
replies := make([][]api.PinInfoSerial, len(members), len(members))
errs := c.multiRPC(members,
"Cluster",
method, struct{}{},
copyPinInfoSerialSliceToIfaces(replies))
mergePins := func(pins []api.PinInfoSerial) {
for _, pserial := range pins {
p := pserial.ToPinInfo()
item, ok := fullMap[pserial.Cid]
if !ok {
fullMap[pserial.Cid] = api.GlobalPinInfo{
Cid: p.Cid,
PeerMap: map[peer.ID]api.PinInfo{
p.Peer: p,
},
}
} else {
item.PeerMap[p.Peer] = p
}
}
}
erroredPeers := make(map[peer.ID]string)
for i, r := range replies {
if e := errs[i]; e != nil { // This error must come from not being able to contact that cluster member
logger.Errorf("%s: error in broadcast response from %s: %s ", c.id, members[i], e)
erroredPeers[members[i]] = e.Error()
} else {
mergePins(r)
}
}
// Merge any errors
for p, msg := range erroredPeers {
for cidStr := range fullMap {
c, _ := cid.Decode(cidStr)
fullMap[cidStr].PeerMap[p] = api.PinInfo{
Cid: c,
Peer: p,
Status: api.TrackerStatusClusterError,
TS: time.Now(),
Error: msg,
}
}
}
for _, v := range fullMap {
infos = append(infos, v)
}
return infos, nil
}
func (c *Cluster) getIDForPeer(pid peer.ID) (api.ID, error) {
idSerial := api.ID{ID: pid}.ToSerial()
err := c.rpcClient.Call(
pid, "Cluster", "ID", struct{}{}, &idSerial)
id := idSerial.ToID()
if err != nil {
logger.Error(err)
id.Error = err.Error()
}
return id, err
}
// allocate finds peers to allocate a hash using the informer and the monitor
// it should only be used with a positive replication factor
func (c *Cluster) allocate(hash *cid.Cid, repl int, blacklist []peer.ID) ([]peer.ID, error) {
if repl <= 0 {
return nil, errors.New("cannot decide allocation for replication factor <= 0")
}
// Figure out who is currently holding this
var pinAllocations []peer.ID
st, err := c.consensus.State()
if err != nil {
// no state we assume it is empty. If there was other
// problem, we would fail to commit anyway.
pinAllocations = []peer.ID{}
} else {
pin := st.Get(hash)
pinAllocations = pin.Allocations
}
// Get the LastMetrics from the leading monitor. They are the last
// valid metrics from current cluster peers
var metrics []api.Metric
metricName := c.informer.Name()
l, err := c.consensus.Leader()
if err != nil {
return nil, errors.New("cannot determine leading Monitor")
}
err = c.rpcClient.Call(l,
"Cluster", "PeerMonitorLastMetrics",
metricName,
&metrics)
if err != nil {
return nil, err
}
// We must divide the metrics between current and candidates
current := make(map[peer.ID]api.Metric)
candidates := make(map[peer.ID]api.Metric)
validAllocations := make([]peer.ID, 0, len(pinAllocations))
for _, m := range metrics {
if m.Discard() || containsPeer(blacklist, m.Peer) {
// blacklisted peers do not exist for us
continue
} else if containsPeer(pinAllocations, m.Peer) {
current[m.Peer] = m
validAllocations = append(validAllocations, m.Peer)
} else {
candidates[m.Peer] = m
}
}
currentValid := len(validAllocations)
candidatesValid := len(candidates)
needed := repl - currentValid
logger.Debugf("allocate: Valid allocations: %d", currentValid)
logger.Debugf("allocate: Valid candidates: %d", candidatesValid)
logger.Debugf("allocate: Needed: %d", needed)
// If needed == 0, we don't need anything. If needed < 0, we are
// reducing the replication factor
switch {
case needed <= 0: // set the allocations to the needed ones
return validAllocations[0 : len(validAllocations)+needed], nil
case candidatesValid < needed:
err = logError(
"not enough candidates to allocate %s. Needed: %d. Got: %d (%s)",
hash, needed, candidatesValid, candidates)
return nil, err
default:
// this will return candidate peers in order of
// preference according to the allocator.
candidateAllocs, err := c.allocator.Allocate(hash, current, candidates)
if err != nil {
return nil, logError(err.Error())
}
logger.Debugf("allocate: candidate allocations: %s", candidateAllocs)
// we don't have enough peers to pin
if got := len(candidateAllocs); got < needed {
err = logError(
"cannot find enough allocations for %s. Needed: %d. Got: %d (%s)",
hash, needed, got, candidateAllocs)
return nil, err
}
// the new allocations = the valid ones we had + the needed ones
return append(validAllocations, candidateAllocs[0:needed]...), nil
}
}
func (c *Cluster) backupState() {
if c.config.path == "" {
logger.Warning("Config.path unset. Skipping backup")
return
}
folder := filepath.Dir(c.config.path)
err := os.MkdirAll(filepath.Join(folder, "backups"), 0700)
if err != nil {
logger.Error(err)
logger.Error("skipping backup")
return
}
fname := time.Now().UTC().Format("20060102_15:04:05")
f, err := os.Create(filepath.Join(folder, "backups", fname))
if err != nil {
logger.Error(err)
return
}
err = c.state.Snapshot(f)
if err != nil {
logger.Error(err)
return
}
defer f.Close()
}