ipfs-cluster/config.go
Hector Sanjuan ab1cc47d75 Fix #97: Assume default DataFolder as subfolder to config folder when empty.
We no longer set ConsensusDataFolder. We leave it empty (and ommited from the
configuration). When not set, it will take the path from which the configuration
file was read and use an "ipfs-cluster-data" subfolder in that path.

When set, the behaviour is just as before (ensures backwards compatiblity).

This will facilitate re-use of configuration files, for example, when mounting
them inside docker.

License: MIT
Signed-off-by: Hector Sanjuan <hector@protocol.ai>
2017-07-18 11:36:24 +02:00

500 lines
16 KiB
Go

package ipfscluster
import (
"bytes"
crand "crypto/rand"
"encoding/base64"
"encoding/hex"
"encoding/json"
"fmt"
"io/ioutil"
"sync"
crypto "github.com/libp2p/go-libp2p-crypto"
peer "github.com/libp2p/go-libp2p-peer"
ma "github.com/multiformats/go-multiaddr"
)
// Default parameters for the configuration
const (
DefaultConfigCrypto = crypto.RSA
DefaultConfigKeyLength = 2048
DefaultAPIAddr = "/ip4/127.0.0.1/tcp/9094"
DefaultIPFSProxyAddr = "/ip4/127.0.0.1/tcp/9095"
DefaultIPFSNodeAddr = "/ip4/127.0.0.1/tcp/5001"
DefaultClusterAddr = "/ip4/0.0.0.0/tcp/9096"
DefaultStateSyncSeconds = 60
DefaultIPFSSyncSeconds = 130
DefaultMonitoringIntervalSeconds = 15
DefaultDataFolder = "ipfs-cluster-data"
)
// Config represents an ipfs-cluster configuration. It is used by
// Cluster components. An initialized version of it can be obtained with
// NewDefaultConfig().
type Config struct {
// Libp2p ID and private key for Cluster communication (including)
// the Consensus component.
ID peer.ID
PrivateKey crypto.PrivKey
// Cluster secret for private network. Peers will be in the same cluster if and
// only if they have the same ClusterSecret. The cluster secret must be exactly
// 64 characters and contain only hexadecimal characters (`[0-9a-f]`).
ClusterSecret []byte
// ClusterPeers is the list of peers in the Cluster. They are used
// as the initial peers in the consensus. When bootstrapping a peer,
// ClusterPeers will be filled in automatically for the next run upon
// shutdown.
ClusterPeers []ma.Multiaddr
// Bootstrap peers multiaddresses. This peer will attempt to
// join the clusters of the peers in this list after booting.
// Leave empty for a single-peer-cluster.
Bootstrap []ma.Multiaddr
// Leave Cluster on shutdown. Politely informs other peers
// of the departure and removes itself from the consensus
// peer set. The Cluster size will be reduced by one.
LeaveOnShutdown bool
// Listen parameters for the Cluster libp2p Host. Used by
// the RPC and Consensus components.
ClusterAddr ma.Multiaddr
// Listen parameters for the the Cluster HTTP API component.
APIAddr ma.Multiaddr
// Listen parameters for the IPFS Proxy. Used by the IPFS
// connector component.
IPFSProxyAddr ma.Multiaddr
// Host/Port for the IPFS daemon.
IPFSNodeAddr ma.Multiaddr
// Storage folder for snapshots, log store etc. Used by
// the Consensus component. The folder should exist.
ConsensusDataFolder string
// Number of seconds between automatic calls to StateSync().
StateSyncSeconds int
// Number of seconds between automatic calls to SyncAllLocal().
IPFSSyncSeconds int
// ReplicationFactor is the number of copies we keep for each pin
ReplicationFactor int
// MonitoringIntervalSeconds is the number of seconds that can
// pass before a peer can be detected as down.
MonitoringIntervalSeconds int
// AllocationStrategy is used to decide on the
// Informer/Allocator implementation to use.
AllocationStrategy string
// if a config has been loaded from disk, track the path
// so it can be saved to the same place.
path string
saveMux sync.Mutex
shadow *Config
}
// JSONConfig represents a Cluster configuration as it will look when it is
// saved using JSON. Most configuration keys are converted into simple types
// like strings, and key names aim to be self-explanatory for the user.
type JSONConfig struct {
// Libp2p ID and private key for Cluster communication (including)
// the Consensus component.
ID string `json:"id"`
PrivateKey string `json:"private_key"`
// Cluster secret for private network. Peers will be in the same cluster if and
// only if they have the same ClusterSecret. The cluster secret must be exactly
// 64 characters and contain only hexadecimal characters (`[0-9a-f]`).
ClusterSecret string `json:"cluster_secret"`
// ClusterPeers is the list of peers' multiaddresses in the Cluster.
// They are used as the initial peers in the consensus. When
// bootstrapping a peer, ClusterPeers will be filled in automatically.
ClusterPeers []string `json:"cluster_peers"`
// Bootstrap peers multiaddresses. This peer will attempt to
// join the clusters of the peers in the list. ONLY when ClusterPeers
// is empty. Otherwise it is ignored. Leave empty for a single-peer
// cluster.
Bootstrap []string `json:"bootstrap"`
// Leave Cluster on shutdown. Politely informs other peers
// of the departure and removes itself from the consensus
// peer set. The Cluster size will be reduced by one.
LeaveOnShutdown bool `json:"leave_on_shutdown"`
// Listen address for the Cluster libp2p host. This is used for
// interal RPC and Consensus communications between cluster peers.
ClusterListenMultiaddress string `json:"cluster_multiaddress"`
// Listen address for the the Cluster HTTP API component.
// Tools like ipfs-cluster-ctl will connect to his endpoint to
// manage cluster.
APIListenMultiaddress string `json:"api_listen_multiaddress"`
// Listen address for the IPFS Proxy, which forwards requests to
// an IPFS daemon.
IPFSProxyListenMultiaddress string `json:"ipfs_proxy_listen_multiaddress"`
// API address for the IPFS daemon.
IPFSNodeMultiaddress string `json:"ipfs_node_multiaddress"`
// Storage folder for snapshots, log store etc. Used by
// the Consensus component. When empty, it defaults to an
// "ipfs-cluster-data" subfolder from which the configuration
// file was read. Otherwise, it uses the value specified.
ConsensusDataFolder string `json:"consensus_data_folder,omitempty"`
// Number of seconds between syncs of the consensus state to the
// tracker state. Normally states are synced anyway, but this helps
// when new nodes are joining the cluster
StateSyncSeconds int `json:"state_sync_seconds"`
// Number of seconds between syncs of the local state and
// the state of the ipfs daemon. This ensures that cluster
// provides the right status for tracked items (for example
// to detect that a pin has been removed.
IPFSSyncSeconds int `json:"ipfs_sync_seconds"`
// ReplicationFactor indicates the number of nodes that must pin content.
// For exampe, a replication_factor of 2 will prompt cluster to choose
// two nodes for each pinned hash. A replication_factor -1 will
// use every available node for each pin.
ReplicationFactor int `json:"replication_factor"`
// Number of seconds between monitoring checks which detect
// if a peer is down and consenquently trigger a rebalance
MonitoringIntervalSeconds int `json:"monitoring_interval_seconds"`
// AllocationStrategy is used to set how pins are allocated to
// different Cluster peers. Currently supports "reposize" and "pincount"
// values.
AllocationStrategy string `json:"allocation_strategy"`
}
// ToJSONConfig converts a Config object to its JSON representation which
// is focused on user presentation and easy understanding.
func (cfg *Config) ToJSONConfig() (j *JSONConfig, err error) {
// Multiaddress String() may panic
defer func() {
if r := recover(); r != nil {
err = fmt.Errorf("%s", r)
}
}()
pkeyBytes, err := cfg.PrivateKey.Bytes()
if err != nil {
return
}
pKey := base64.StdEncoding.EncodeToString(pkeyBytes)
clusterPeers := make([]string, len(cfg.ClusterPeers), len(cfg.ClusterPeers))
for i := 0; i < len(cfg.ClusterPeers); i++ {
clusterPeers[i] = cfg.ClusterPeers[i].String()
}
bootstrap := make([]string, len(cfg.Bootstrap), len(cfg.Bootstrap))
for i := 0; i < len(cfg.Bootstrap); i++ {
bootstrap[i] = cfg.Bootstrap[i].String()
}
j = &JSONConfig{
ID: cfg.ID.Pretty(),
PrivateKey: pKey,
ClusterSecret: EncodeClusterSecret(cfg.ClusterSecret),
ClusterPeers: clusterPeers,
Bootstrap: bootstrap,
LeaveOnShutdown: cfg.LeaveOnShutdown,
ClusterListenMultiaddress: cfg.ClusterAddr.String(),
APIListenMultiaddress: cfg.APIAddr.String(),
IPFSProxyListenMultiaddress: cfg.IPFSProxyAddr.String(),
IPFSNodeMultiaddress: cfg.IPFSNodeAddr.String(),
ConsensusDataFolder: cfg.ConsensusDataFolder,
StateSyncSeconds: cfg.StateSyncSeconds,
IPFSSyncSeconds: cfg.IPFSSyncSeconds,
ReplicationFactor: cfg.ReplicationFactor,
MonitoringIntervalSeconds: cfg.MonitoringIntervalSeconds,
AllocationStrategy: cfg.AllocationStrategy,
}
return
}
// ToConfig converts a JSONConfig to its internal Config representation,
// where options are parsed into their native types.
func (jcfg *JSONConfig) ToConfig() (c *Config, err error) {
id, err := peer.IDB58Decode(jcfg.ID)
if err != nil {
err = fmt.Errorf("error decoding cluster ID: %s", err)
return
}
pkb, err := base64.StdEncoding.DecodeString(jcfg.PrivateKey)
if err != nil {
err = fmt.Errorf("error decoding private_key: %s", err)
return
}
pKey, err := crypto.UnmarshalPrivateKey(pkb)
if err != nil {
err = fmt.Errorf("error parsing private_key ID: %s", err)
return
}
clusterSecret, err := DecodeClusterSecret(jcfg.ClusterSecret)
if err != nil {
err = fmt.Errorf("error loading cluster secret from config: ", err)
return nil, err
}
clusterPeers := make([]ma.Multiaddr, len(jcfg.ClusterPeers))
for i := 0; i < len(jcfg.ClusterPeers); i++ {
maddr, err := ma.NewMultiaddr(jcfg.ClusterPeers[i])
if err != nil {
err = fmt.Errorf("error parsing multiaddress for peer %s: %s",
jcfg.ClusterPeers[i], err)
return nil, err
}
clusterPeers[i] = maddr
}
bootstrap := make([]ma.Multiaddr, len(jcfg.Bootstrap))
for i := 0; i < len(jcfg.Bootstrap); i++ {
maddr, err := ma.NewMultiaddr(jcfg.Bootstrap[i])
if err != nil {
err = fmt.Errorf("error parsing multiaddress for peer %s: %s",
jcfg.Bootstrap[i], err)
return nil, err
}
bootstrap[i] = maddr
}
clusterAddr, err := ma.NewMultiaddr(jcfg.ClusterListenMultiaddress)
if err != nil {
err = fmt.Errorf("error parsing cluster_listen_multiaddress: %s", err)
return
}
apiAddr, err := ma.NewMultiaddr(jcfg.APIListenMultiaddress)
if err != nil {
err = fmt.Errorf("error parsing api_listen_multiaddress: %s", err)
return
}
ipfsProxyAddr, err := ma.NewMultiaddr(jcfg.IPFSProxyListenMultiaddress)
if err != nil {
err = fmt.Errorf("error parsing ipfs_proxy_listen_multiaddress: %s", err)
return
}
ipfsNodeAddr, err := ma.NewMultiaddr(jcfg.IPFSNodeMultiaddress)
if err != nil {
err = fmt.Errorf("error parsing ipfs_node_multiaddress: %s", err)
return
}
if jcfg.ReplicationFactor == 0 {
logger.Warning("Replication factor set to -1 (pin everywhere)")
jcfg.ReplicationFactor = -1
}
if jcfg.StateSyncSeconds <= 0 {
jcfg.StateSyncSeconds = DefaultStateSyncSeconds
}
if jcfg.IPFSSyncSeconds <= 0 {
jcfg.IPFSSyncSeconds = DefaultIPFSSyncSeconds
}
if jcfg.MonitoringIntervalSeconds <= 0 {
jcfg.MonitoringIntervalSeconds = DefaultMonitoringIntervalSeconds
}
if jcfg.AllocationStrategy == "" {
jcfg.AllocationStrategy = "reposize"
}
c = &Config{
ID: id,
PrivateKey: pKey,
ClusterSecret: clusterSecret,
ClusterPeers: clusterPeers,
Bootstrap: bootstrap,
LeaveOnShutdown: jcfg.LeaveOnShutdown,
ClusterAddr: clusterAddr,
APIAddr: apiAddr,
IPFSProxyAddr: ipfsProxyAddr,
IPFSNodeAddr: ipfsNodeAddr,
ConsensusDataFolder: jcfg.ConsensusDataFolder,
StateSyncSeconds: jcfg.StateSyncSeconds,
IPFSSyncSeconds: jcfg.IPFSSyncSeconds,
ReplicationFactor: jcfg.ReplicationFactor,
MonitoringIntervalSeconds: jcfg.MonitoringIntervalSeconds,
AllocationStrategy: jcfg.AllocationStrategy,
}
return
}
// LoadConfig reads a JSON configuration file from the given path,
// parses it and returns a new Config object.
func LoadConfig(path string) (*Config, error) {
jcfg := &JSONConfig{}
file, err := ioutil.ReadFile(path)
if err != nil {
logger.Error("error reading the configuration file: ", err)
return nil, err
}
err = json.Unmarshal(file, jcfg)
if err != nil {
logger.Error("error parsing JSON: ", err)
return nil, err
}
cfg, err := jcfg.ToConfig()
if err != nil {
logger.Error("error parsing configuration: ", err)
return nil, err
}
cfg.path = path
return cfg, nil
}
// Save stores a configuration as a JSON file in the given path.
// If no path is provided, it uses the path the configuration was
// loaded from.
func (cfg *Config) Save(path string) error {
cfg.saveMux.Lock()
defer cfg.saveMux.Unlock()
cfg.unshadow()
if path == "" {
path = cfg.path
}
logger.Info("Saving configuration")
jcfg, err := cfg.ToJSONConfig()
if err != nil {
logger.Error("error generating JSON config")
return err
}
json, err := json.MarshalIndent(jcfg, "", " ")
if err != nil {
return err
}
err = ioutil.WriteFile(path, json, 0600)
return err
}
// Shadow copies certain configuration values to a shadow configuration
// object. From the moment Shadow is called, configuration keys which are
// shadowed may be changed, but Save() will restore them to the original
// value stored in the shadow. Currently affects:
//
// - AllocationStrategy
// - LeaveOnShutdown
// - Bootstrap
//
// which are options which can be overriden via ipfs-cluster-service flags.
// The shadow dissapears with every call to Save().
func (cfg *Config) Shadow() {
cfg.shadow = &Config{
AllocationStrategy: cfg.AllocationStrategy,
LeaveOnShutdown: cfg.LeaveOnShutdown,
Bootstrap: cfg.Bootstrap,
}
}
func (cfg *Config) unshadow() {
if cfg.shadow != nil {
cfg.AllocationStrategy = cfg.shadow.AllocationStrategy
cfg.LeaveOnShutdown = cfg.shadow.LeaveOnShutdown
cfg.Bootstrap = cfg.shadow.Bootstrap
}
cfg.shadow = nil
}
func generateClusterSecret() ([]byte, error) {
secretBytes := make([]byte, 32)
_, err := crand.Read(secretBytes)
if err != nil {
return nil, fmt.Errorf("Error reading from rand: %v", err)
}
return secretBytes, nil
}
func clusterSecretToKey(secret []byte) (string, error) {
var key bytes.Buffer
key.WriteString("/key/swarm/psk/1.0.0/\n")
key.WriteString("/base16/\n")
key.WriteString(EncodeClusterSecret(secret))
return key.String(), nil
}
// DecodeClusterSecret parses a hex-encoded string, checks that it is exactly
// 32 bytes long and returns its value as a byte-slice.x
func DecodeClusterSecret(hexSecret string) ([]byte, error) {
secret, err := hex.DecodeString(hexSecret)
if err != nil {
return nil, err
}
secretLen := len(secret)
if secretLen != 32 {
return nil, fmt.Errorf("Input secret is %d bytes, cluster secret should be 32.", secretLen)
}
return secret, nil
}
// EncodeClusterSecret converts a byte slice to its hex string representation.
func EncodeClusterSecret(secretBytes []byte) string {
return hex.EncodeToString(secretBytes)
}
// NewDefaultConfig returns a default configuration object with a randomly
// generated ID and private key.
func NewDefaultConfig() (*Config, error) {
priv, pub, err := crypto.GenerateKeyPair(
DefaultConfigCrypto,
DefaultConfigKeyLength)
if err != nil {
return nil, err
}
pid, err := peer.IDFromPublicKey(pub)
if err != nil {
return nil, err
}
clusterSecret, err := generateClusterSecret()
if err != nil {
return nil, err
}
clusterAddr, _ := ma.NewMultiaddr(DefaultClusterAddr)
apiAddr, _ := ma.NewMultiaddr(DefaultAPIAddr)
ipfsProxyAddr, _ := ma.NewMultiaddr(DefaultIPFSProxyAddr)
ipfsNodeAddr, _ := ma.NewMultiaddr(DefaultIPFSNodeAddr)
return &Config{
ID: pid,
PrivateKey: priv,
ClusterSecret: clusterSecret,
ClusterPeers: []ma.Multiaddr{},
Bootstrap: []ma.Multiaddr{},
LeaveOnShutdown: false,
ClusterAddr: clusterAddr,
APIAddr: apiAddr,
IPFSProxyAddr: ipfsProxyAddr,
IPFSNodeAddr: ipfsNodeAddr,
ConsensusDataFolder: "",
StateSyncSeconds: DefaultStateSyncSeconds,
IPFSSyncSeconds: DefaultIPFSSyncSeconds,
ReplicationFactor: -1,
MonitoringIntervalSeconds: DefaultMonitoringIntervalSeconds,
AllocationStrategy: "reposize",
}, nil
}