ipfs-cluster/cluster_test.go
Hector Sanjuan acbd7fda60 Consensus: add new "crdt" consensus component
This adds a new "crdt" consensus component using go-ds-crdt.

This implies several refactors to fully make cluster consensus-component
independent:

* Delete mapstate and fully adopt dsstate (after people have migrated).
* Return errors from state methods rather than ignoring them.
* Add a new "datastore" modules so that we can configure datastores in the
   main configuration like other components.
* Let the consensus components fully define the "state.State". Thus, they do
not receive the state, they receive the storage where we put the state (a
go-datastore).
* Allow to customize how the monitor component obtains Peers() (the current
  peerset), including avoiding using the current peerset. At the moment the
  crdt consensus uses the monitoring component to define the current peerset.
  Therefore the monitor component cannot rely on the consensus component to
  produce a peerset.
* Re-factor/re-implementation of "ipfs-cluster-service state"
  operations. Includes the dissapearance of the "migrate" one.

The CRDT consensus component defines creates a crdt-datastore (with ipfs-lite)
and uses it to intitialize a dssate. Thus the crdt-store is elegantly
wrapped. Any modifications to the state get automatically replicated to other
peers. We store all the CRDT DAG blocks in the local datastore.

The consensus components only expose a ReadOnly state, as any modifications to
the shared state should happen through them.

DHT and PubSub facilities must now be created outside of Cluster and passed in
so they can be re-used by different components.
2019-04-17 19:14:26 +02:00

893 lines
21 KiB
Go

package ipfscluster
import (
"context"
"errors"
"mime/multipart"
"os"
"path/filepath"
"sync"
"testing"
"time"
"github.com/ipfs/ipfs-cluster/adder/sharding"
"github.com/ipfs/ipfs-cluster/allocator/ascendalloc"
"github.com/ipfs/ipfs-cluster/api"
"github.com/ipfs/ipfs-cluster/consensus/raft"
"github.com/ipfs/ipfs-cluster/datastore/inmem"
"github.com/ipfs/ipfs-cluster/informer/numpin"
"github.com/ipfs/ipfs-cluster/monitor/pubsubmon"
"github.com/ipfs/ipfs-cluster/state"
"github.com/ipfs/ipfs-cluster/test"
"github.com/ipfs/ipfs-cluster/version"
gopath "github.com/ipfs/go-path"
cid "github.com/ipfs/go-cid"
rpc "github.com/libp2p/go-libp2p-gorpc"
peer "github.com/libp2p/go-libp2p-peer"
)
type mockComponent struct {
rpcClient *rpc.Client
}
func (c *mockComponent) Shutdown(ctx context.Context) error {
return nil
}
func (c *mockComponent) SetClient(client *rpc.Client) {
c.rpcClient = client
return
}
type mockAPI struct {
mockComponent
}
type mockProxy struct {
mockComponent
}
type mockConnector struct {
mockComponent
pins sync.Map
blocks sync.Map
}
func (ipfs *mockConnector) ID(ctx context.Context) (*api.IPFSID, error) {
return &api.IPFSID{
ID: test.PeerID1,
}, nil
}
func (ipfs *mockConnector) Pin(ctx context.Context, c cid.Cid, maxDepth int) error {
ipfs.pins.Store(c.String(), maxDepth)
return nil
}
func (ipfs *mockConnector) Unpin(ctx context.Context, c cid.Cid) error {
ipfs.pins.Delete(c.String())
return nil
}
func (ipfs *mockConnector) PinLsCid(ctx context.Context, c cid.Cid) (api.IPFSPinStatus, error) {
dI, ok := ipfs.pins.Load(c.String())
if !ok {
return api.IPFSPinStatusUnpinned, nil
}
depth := dI.(int)
if depth == 0 {
return api.IPFSPinStatusDirect, nil
}
return api.IPFSPinStatusRecursive, nil
}
func (ipfs *mockConnector) PinLs(ctx context.Context, filter string) (map[string]api.IPFSPinStatus, error) {
m := make(map[string]api.IPFSPinStatus)
var st api.IPFSPinStatus
ipfs.pins.Range(func(k, v interface{}) bool {
switch v.(int) {
case 0:
st = api.IPFSPinStatusDirect
default:
st = api.IPFSPinStatusRecursive
}
m[k.(string)] = st
return true
})
return m, nil
}
func (ipfs *mockConnector) SwarmPeers(ctx context.Context) ([]peer.ID, error) {
return []peer.ID{test.PeerID4, test.PeerID5}, nil
}
func (ipfs *mockConnector) RepoStat(ctx context.Context) (*api.IPFSRepoStat, error) {
return &api.IPFSRepoStat{RepoSize: 100, StorageMax: 1000}, nil
}
func (ipfs *mockConnector) Resolve(ctx context.Context, path string) (cid.Cid, error) {
_, err := gopath.ParsePath(path)
if err != nil {
return cid.Undef, err
}
return test.CidResolved, nil
}
func (ipfs *mockConnector) ConnectSwarms(ctx context.Context) error { return nil }
func (ipfs *mockConnector) ConfigKey(keypath string) (interface{}, error) { return nil, nil }
func (ipfs *mockConnector) BlockPut(ctx context.Context, nwm *api.NodeWithMeta) error {
ipfs.blocks.Store(nwm.Cid.String(), nwm.Data)
return nil
}
func (ipfs *mockConnector) BlockGet(ctx context.Context, c cid.Cid) ([]byte, error) {
d, ok := ipfs.blocks.Load(c.String())
if !ok {
return nil, errors.New("block not found")
}
return d.([]byte), nil
}
type mockTracer struct {
mockComponent
}
func testingCluster(t *testing.T) (*Cluster, *mockAPI, *mockConnector, PinTracker) {
clusterCfg, _, _, _, _, raftCfg, _, maptrackerCfg, statelesstrackerCfg, psmonCfg, _, _ := testingConfigs()
host, pubsub, dht, err := NewClusterHost(context.Background(), clusterCfg)
if err != nil {
t.Fatal(err)
}
api := &mockAPI{}
proxy := &mockProxy{}
ipfs := &mockConnector{}
tracker := makePinTracker(t, clusterCfg.ID, maptrackerCfg, statelesstrackerCfg, clusterCfg.Peername)
tracer := &mockTracer{}
store := inmem.New()
raftcon, _ := raft.NewConsensus(host, raftCfg, store, false)
psmonCfg.CheckInterval = 2 * time.Second
mon, err := pubsubmon.New(psmonCfg, pubsub, raftcon.Peers)
if err != nil {
t.Fatal(err)
}
alloc := ascendalloc.NewAllocator()
numpinCfg := &numpin.Config{}
numpinCfg.Default()
inf, _ := numpin.NewInformer(numpinCfg)
ReadyTimeout = raftCfg.WaitForLeaderTimeout + 1*time.Second
cl, err := NewCluster(
host,
dht,
clusterCfg,
store,
raftcon,
[]API{api, proxy},
ipfs,
tracker,
mon,
alloc,
inf,
tracer,
)
if err != nil {
t.Fatal("cannot create cluster:", err)
}
<-cl.Ready()
return cl, api, ipfs, tracker
}
func cleanRaft() {
raftDirs, _ := filepath.Glob("raftFolderFromTests*")
for _, dir := range raftDirs {
os.RemoveAll(dir)
}
}
func testClusterShutdown(t *testing.T) {
ctx := context.Background()
cl, _, _, _ := testingCluster(t)
err := cl.Shutdown(ctx)
if err != nil {
t.Error("cluster shutdown failed:", err)
}
cl.Shutdown(ctx)
cl, _, _, _ = testingCluster(t)
err = cl.Shutdown(ctx)
if err != nil {
t.Error("cluster shutdown failed:", err)
}
}
func TestClusterStateSync(t *testing.T) {
ctx := context.Background()
cleanRaft()
cl, _, _, _ := testingCluster(t)
defer cleanRaft()
defer cl.Shutdown(ctx)
c := test.Cid1
err := cl.Pin(ctx, api.PinCid(c))
if err != nil {
t.Fatal("pin should have worked:", err)
}
err = cl.StateSync(ctx)
if err != nil {
t.Fatal("sync after pinning should have worked:", err)
}
// Modify state on the side so the sync does not
// happen on an empty slide
st, err := cl.consensus.State(ctx)
if err != nil {
t.Fatal(err)
}
st.(state.State).Rm(ctx, c)
err = cl.StateSync(ctx)
if err != nil {
t.Fatal("sync with recover should have worked:", err)
}
}
func TestClusterID(t *testing.T) {
ctx := context.Background()
cl, _, _, _ := testingCluster(t)
defer cleanRaft()
defer cl.Shutdown(ctx)
id := cl.ID(ctx)
if len(id.Addresses) == 0 {
t.Error("expected more addresses")
}
if id.ID == "" {
t.Error("expected a cluster ID")
}
if id.Version != version.Version.String() {
t.Error("version should match current version")
}
//if id.PublicKey == nil {
// t.Error("publicKey should not be empty")
//}
}
func TestClusterPin(t *testing.T) {
ctx := context.Background()
cl, _, _, _ := testingCluster(t)
defer cleanRaft()
defer cl.Shutdown(ctx)
c := test.Cid1
err := cl.Pin(ctx, api.PinCid(c))
if err != nil {
t.Fatal("pin should have worked:", err)
}
// test an error case
cl.consensus.Shutdown(ctx)
pin := api.PinCid(c)
pin.ReplicationFactorMax = 1
pin.ReplicationFactorMin = 1
err = cl.Pin(ctx, pin)
if err == nil {
t.Error("expected an error but things worked")
}
}
func TestClusterPinPath(t *testing.T) {
ctx := context.Background()
cl, _, _, _ := testingCluster(t)
defer cleanRaft()
defer cl.Shutdown(ctx)
pin, err := cl.PinPath(ctx, &api.PinPath{Path: test.PathIPFS2})
if err != nil {
t.Fatal("pin should have worked:", err)
}
if !pin.Cid.Equals(test.CidResolved) {
t.Error("expected a different cid, found", pin.Cid.String())
}
// test an error case
_, err = cl.PinPath(ctx, &api.PinPath{Path: test.InvalidPath1})
if err == nil {
t.Error("expected an error but things worked")
}
}
func TestAddFile(t *testing.T) {
ctx := context.Background()
cl, _, _, _ := testingCluster(t)
defer cleanRaft()
defer cl.Shutdown(ctx)
sth := test.NewShardingTestHelper()
defer sth.Clean(t)
t.Run("local", func(t *testing.T) {
params := api.DefaultAddParams()
params.Shard = false
params.Name = "testlocal"
mfr, closer := sth.GetTreeMultiReader(t)
defer closer.Close()
r := multipart.NewReader(mfr, mfr.Boundary())
c, err := cl.AddFile(r, params)
if err != nil {
t.Fatal(err)
}
if c.String() != test.ShardingDirBalancedRootCID {
t.Fatal("unexpected root CID for local add")
}
pinDelay()
pin := cl.StatusLocal(ctx, c)
if pin.Error != "" {
t.Fatal(pin.Error)
}
if pin.Status != api.TrackerStatusPinned {
t.Error("cid should be pinned")
}
cl.Unpin(ctx, c) // unpin so we can pin the shard in next test
pinDelay()
})
t.Run("shard", func(t *testing.T) {
params := api.DefaultAddParams()
params.Shard = true
params.Name = "testshard"
mfr, closer := sth.GetTreeMultiReader(t)
defer closer.Close()
r := multipart.NewReader(mfr, mfr.Boundary())
c, err := cl.AddFile(r, params)
if err != nil {
t.Fatal(err)
}
if c.String() != test.ShardingDirBalancedRootCID {
t.Fatal("unexpected root CID for local add")
}
pinDelay()
// We know that this produces 14 shards.
sharding.VerifyShards(t, c, cl, cl.ipfs, 14)
})
}
func TestUnpinShard(t *testing.T) {
ctx := context.Background()
cl, _, _, _ := testingCluster(t)
defer cleanRaft()
defer cl.Shutdown(ctx)
sth := test.NewShardingTestHelper()
defer sth.Clean(t)
params := api.DefaultAddParams()
params.Shard = true
params.Name = "testshard"
mfr, closer := sth.GetTreeMultiReader(t)
defer closer.Close()
r := multipart.NewReader(mfr, mfr.Boundary())
root, err := cl.AddFile(r, params)
if err != nil {
t.Fatal(err)
}
pinDelay()
// We know that this produces 14 shards.
sharding.VerifyShards(t, root, cl, cl.ipfs, 14)
// skipping errors, VerifyShards has checked
pinnedCids := []cid.Cid{}
pinnedCids = append(pinnedCids, root)
metaPin, _ := cl.PinGet(ctx, root)
cDag, _ := cl.PinGet(ctx, *metaPin.Reference)
pinnedCids = append(pinnedCids, cDag.Cid)
cDagBlock, _ := cl.ipfs.BlockGet(ctx, cDag.Cid)
cDagNode, _ := sharding.CborDataToNode(cDagBlock, "cbor")
for _, l := range cDagNode.Links() {
pinnedCids = append(pinnedCids, l.Cid)
}
t.Run("unpin clusterdag should fail", func(t *testing.T) {
err := cl.Unpin(ctx, cDag.Cid)
if err == nil {
t.Fatal("should not allow unpinning the cluster DAG directly")
}
t.Log(err)
})
t.Run("unpin shard should fail", func(t *testing.T) {
err := cl.Unpin(ctx, cDagNode.Links()[0].Cid)
if err == nil {
t.Fatal("should not allow unpinning shards directly")
}
t.Log(err)
})
t.Run("normal unpin", func(t *testing.T) {
err := cl.Unpin(ctx, root)
if err != nil {
t.Fatal(err)
}
pinDelay()
for _, c := range pinnedCids {
st := cl.StatusLocal(ctx, c)
if st.Status != api.TrackerStatusUnpinned {
t.Errorf("%s should have been unpinned but is %s", c, st.Status)
}
st2, err := cl.ipfs.PinLsCid(context.Background(), c)
if err != nil {
t.Fatal(err)
}
if st2 != api.IPFSPinStatusUnpinned {
t.Errorf("%s should have been unpinned in ipfs but is %d", c, st2)
}
}
})
}
// func singleShardedPin(t *testing.T, cl *Cluster) {
// cShard, _ := cid.Decode(test.ShardCid)
// cCdag, _ := cid.Decode(test.CdagCid)
// cMeta, _ := cid.Decode(test.MetaRootCid)
// pinMeta(t, cl, []cid.Cid{cShard}, cCdag, cMeta)
// }
// func pinMeta(t *testing.T, cl *Cluster, shardCids []cid.Cid, cCdag, cMeta cid.Cid) {
// for _, cShard := range shardCids {
// shardPin := api.Pin{
// Cid: cShard,
// Type: api.ShardType,
// MaxDepth: 1,
// PinOptions: api.PinOptions{
// ReplicationFactorMin: -1,
// ReplicationFactorMax: -1,
// },
// }
// err := cl.Pin(shardPin)
// if err != nil {
// t.Fatal("shard pin should have worked:", err)
// }
// }
// parents := cid.NewSet()
// parents.Add(cMeta)
// cdagPin := api.Pin{
// Cid: cCdag,
// Type: api.ClusterDAGType,
// MaxDepth: 0,
// PinOptions: api.PinOptions{
// ReplicationFactorMin: -1,
// ReplicationFactorMax: -1,
// },
// }
// err := cl.Pin(cdagPin)
// if err != nil {
// t.Fatal("pin should have worked:", err)
// }
// metaPin := api.Pin{
// Cid: cMeta,
// Type: api.MetaType,
// Clusterdag: cCdag,
// }
// err = cl.Pin(metaPin)
// if err != nil {
// t.Fatal("pin should have worked:", err)
// }
// }
// func TestClusterPinMeta(t *testing.T) {
// cl, _, _, _ := testingCluster(t)
// defer cleanRaft()
// defer cl.Shutdown()
// singleShardedPin(t, cl)
// }
// func TestClusterUnpinShardFail(t *testing.T) {
// cl, _, _, _ := testingCluster(t)
// defer cleanRaft()
// defer cl.Shutdown()
// singleShardedPin(t, cl)
// // verify pins
// if len(cl.Pins()) != 3 {
// t.Fatal("should have 3 pins")
// }
// // Unpinning metadata should fail
// cShard, _ := cid.Decode(test.ShardCid)
// cCdag, _ := cid.Decode(test.CdagCid)
// err := cl.Unpin(cShard)
// if err == nil {
// t.Error("should error when unpinning shard")
// }
// err = cl.Unpin(cCdag)
// if err == nil {
// t.Error("should error when unpinning cluster dag")
// }
// }
// func TestClusterUnpinMeta(t *testing.T) {
// cl, _, _, _ := testingCluster(t)
// defer cleanRaft()
// defer cl.Shutdown()
// singleShardedPin(t, cl)
// // verify pins
// if len(cl.Pins()) != 3 {
// t.Fatal("should have 3 pins")
// }
// // Unpinning from root should work
// cMeta, _ := cid.Decode(test.MetaRootCid)
// err := cl.Unpin(cMeta)
// if err != nil {
// t.Error(err)
// }
// }
// func pinTwoParentsOneShard(t *testing.T, cl *Cluster) {
// singleShardedPin(t, cl)
// cShard, _ := cid.Decode(test.ShardCid)
// cShard2, _ := cid.Decode(test.ShardCid2)
// cCdag2, _ := cid.Decode(test.CdagCid2)
// cMeta2, _ := cid.Decode(test.MetaRootCid2)
// pinMeta(t, cl, []cid.Cid{cShard, cShard2}, cCdag2, cMeta2)
// shardPin, err := cl.PinGet(cShard)
// if err != nil {
// t.Fatal("pin should be in state")
// }
// if shardPin.Parents.Len() != 2 {
// t.Fatal("unexpected parent set in shared shard")
// }
// shardPin2, err := cl.PinGet(cShard2)
// if shardPin2.Parents.Len() != 1 {
// t.Fatal("unexpected parent set in unshared shard")
// }
// if err != nil {
// t.Fatal("pin should be in state")
// }
// }
// func TestClusterPinShardTwoParents(t *testing.T) {
// cl, _, _, _ := testingCluster(t)
// defer cleanRaft()
// defer cl.Shutdown()
// pinTwoParentsOneShard(t, cl)
// cShard, _ := cid.Decode(test.ShardCid)
// shardPin, err := cl.PinGet(cShard)
// if err != nil {
// t.Fatal("double pinned shard should be pinned")
// }
// if shardPin.Parents == nil || shardPin.Parents.Len() != 2 {
// t.Fatal("double pinned shard should have two parents")
// }
// }
// func TestClusterUnpinShardSecondParent(t *testing.T) {
// cl, _, _, _ := testingCluster(t)
// defer cleanRaft()
// defer cl.Shutdown()
// pinTwoParentsOneShard(t, cl)
// if len(cl.Pins()) != 6 {
// t.Fatal("should have 6 pins")
// }
// cMeta2, _ := cid.Decode(test.MetaRootCid2)
// err := cl.Unpin(cMeta2)
// if err != nil {
// t.Error(err)
// }
// pinDelay()
// if len(cl.Pins()) != 3 {
// t.Fatal("should have 3 pins")
// }
// cShard, _ := cid.Decode(test.ShardCid)
// cCdag, _ := cid.Decode(test.CdagCid)
// shardPin, err := cl.PinGet(cShard)
// if err != nil {
// t.Fatal("double pinned shard node should still be pinned")
// }
// if shardPin.Parents == nil || shardPin.Parents.Len() != 1 ||
// !shardPin.Parents.Has(cCdag) {
// t.Fatalf("shard node should have single original parent %v", shardPin.Parents.Keys())
// }
// }
// func TestClusterUnpinShardFirstParent(t *testing.T) {
// cl, _, _, _ := testingCluster(t)
// defer cleanRaft()
// defer cl.Shutdown()
// pinTwoParentsOneShard(t, cl)
// if len(cl.Pins()) != 6 {
// t.Fatal("should have 6 pins")
// }
// cMeta, _ := cid.Decode(test.MetaRootCid)
// err := cl.Unpin(cMeta)
// if err != nil {
// t.Error(err)
// }
// if len(cl.Pins()) != 4 {
// t.Fatal("should have 4 pins")
// }
// cShard, _ := cid.Decode(test.ShardCid)
// cShard2, _ := cid.Decode(test.ShardCid2)
// cCdag2, _ := cid.Decode(test.CdagCid2)
// shardPin, err := cl.PinGet(cShard)
// if err != nil {
// t.Fatal("double pinned shard node should still be pinned")
// }
// if shardPin.Parents == nil || shardPin.Parents.Len() != 1 ||
// !shardPin.Parents.Has(cCdag2) {
// t.Fatal("shard node should have single original parent")
// }
// _, err = cl.PinGet(cShard2)
// if err != nil {
// t.Fatal("other shard shoud still be pinned too")
// }
// }
// func TestClusterPinTwoMethodsFail(t *testing.T) {
// cl, _, _, _ := testingCluster(t)
// defer cleanRaft()
// defer cl.Shutdown()
// // First pin normally then sharding pin fails
// c, _ := cid.Decode(test.MetaRootCid)
// err := cl.Pin(api.PinCid(c))
// if err != nil {
// t.Fatal("pin should have worked:", err)
// }
// cCdag, _ := cid.Decode(test.CdagCid)
// cMeta, _ := cid.Decode(test.MetaRootCid)
// metaPin := api.Pin{
// Cid: cMeta,
// Type: api.MetaType,
// Clusterdag: cCdag,
// }
// err = cl.Pin(metaPin)
// if err == nil {
// t.Fatal("pin should have failed:", err)
// }
// err = cl.Unpin(c)
// if err != nil {
// t.Fatal("unpin should have worked:", err)
// }
// singleShardedPin(t, cl)
// err = cl.Pin(api.PinCid(c))
// if err == nil {
// t.Fatal("pin should have failed:", err)
// }
// }
// func TestClusterRePinShard(t *testing.T) {
// cl, _, _, _ := testingCluster(t)
// defer cleanRaft()
// defer cl.Shutdown()
// cCdag, _ := cid.Decode(test.CdagCid)
// cShard, _ := cid.Decode(test.ShardCid)
// shardPin := api.Pin{
// Cid: cShard,
// Type: api.ShardType,
// ReplicationFactorMin: -1,
// ReplicationFactorMax: -1,
// Recursive: true,
// }
// err := cl.Pin(shardPin)
// if err != nil {
// t.Fatal("shard pin should have worked:", err)
// }
// parents := cid.NewSet()
// parents.Add(cCdag)
// shardPin.Parents = parents
// err = cl.Pin(shardPin)
// if err != nil {
// t.Fatal("repinning shard pin with different parents should have worked:", err)
// }
// shardPin.ReplicationFactorMin = 3
// shardPin.ReplicationFactorMax = 5
// err = cl.Pin(shardPin)
// if err == nil {
// t.Fatal("repinning shard pin with different repl factors should have failed:", err)
// }
// }
func TestClusterPins(t *testing.T) {
ctx := context.Background()
cl, _, _, _ := testingCluster(t)
defer cleanRaft()
defer cl.Shutdown(ctx)
c := test.Cid1
err := cl.Pin(ctx, api.PinCid(c))
if err != nil {
t.Fatal("pin should have worked:", err)
}
pins, err := cl.Pins(ctx)
if err != nil {
t.Fatal(err)
}
if len(pins) != 1 {
t.Fatal("pin should be part of the state")
}
if !pins[0].Cid.Equals(c) || pins[0].ReplicationFactorMin != -1 || pins[0].ReplicationFactorMax != -1 {
t.Error("the Pin does not look as expected")
}
}
func TestClusterPinGet(t *testing.T) {
ctx := context.Background()
cl, _, _, _ := testingCluster(t)
defer cleanRaft()
defer cl.Shutdown(ctx)
c := test.Cid1
err := cl.Pin(ctx, api.PinCid(c))
if err != nil {
t.Fatal("pin should have worked:", err)
}
pin, err := cl.PinGet(ctx, c)
if err != nil {
t.Fatal(err)
}
if !pin.Cid.Equals(c) || pin.ReplicationFactorMin != -1 || pin.ReplicationFactorMax != -1 {
t.Error("the Pin does not look as expected")
}
_, err = cl.PinGet(ctx, test.Cid2)
if err == nil {
t.Fatal("expected an error")
}
}
func TestClusterUnpin(t *testing.T) {
ctx := context.Background()
cl, _, _, _ := testingCluster(t)
defer cleanRaft()
defer cl.Shutdown(ctx)
c := test.Cid1
// Unpin should error without pin being committed to state
err := cl.Unpin(ctx, c)
if err == nil {
t.Error("unpin should have failed")
}
// Unpin after pin should succeed
err = cl.Pin(ctx, api.PinCid(c))
if err != nil {
t.Fatal("pin should have worked:", err)
}
err = cl.Unpin(ctx, c)
if err != nil {
t.Error("unpin should have worked:", err)
}
// test another error case
cl.consensus.Shutdown(ctx)
err = cl.Unpin(ctx, c)
if err == nil {
t.Error("expected an error but things worked")
}
}
func TestClusterUnpinPath(t *testing.T) {
ctx := context.Background()
cl, _, _, _ := testingCluster(t)
defer cleanRaft()
defer cl.Shutdown(ctx)
// Unpin should error without pin being committed to state
_, err := cl.UnpinPath(ctx, test.PathIPFS2)
if err == nil {
t.Error("unpin with path should have failed")
}
// Unpin after pin should succeed
pin, err := cl.PinPath(ctx, &api.PinPath{Path: test.PathIPFS2})
if err != nil {
t.Fatal("pin with should have worked:", err)
}
if !pin.Cid.Equals(test.CidResolved) {
t.Error("expected a different cid, found", pin.Cid.String())
}
pin, err = cl.UnpinPath(ctx, test.PathIPFS2)
if err != nil {
t.Error("unpin with path should have worked:", err)
}
if !pin.Cid.Equals(test.CidResolved) {
t.Error("expected a different cid, found", pin.Cid.String())
}
}
func TestClusterPeers(t *testing.T) {
ctx := context.Background()
cl, _, _, _ := testingCluster(t)
defer cleanRaft()
defer cl.Shutdown(ctx)
peers := cl.Peers(ctx)
if len(peers) != 1 {
t.Fatal("expected 1 peer")
}
clusterCfg := &Config{}
clusterCfg.LoadJSON(testingClusterCfg)
if peers[0].ID != clusterCfg.ID {
t.Error("bad member")
}
}
func TestVersion(t *testing.T) {
ctx := context.Background()
cl, _, _, _ := testingCluster(t)
defer cleanRaft()
defer cl.Shutdown(ctx)
if cl.Version() != version.Version.String() {
t.Error("bad Version()")
}
}
func TestClusterRecoverAllLocal(t *testing.T) {
ctx := context.Background()
cl, _, _, _ := testingCluster(t)
defer cleanRaft()
defer cl.Shutdown(ctx)
err := cl.Pin(ctx, api.PinCid(test.Cid1))
if err != nil {
t.Fatal("pin should have worked:", err)
}
pinDelay()
recov, err := cl.RecoverAllLocal(ctx)
if err != nil {
t.Error("did not expect an error")
}
if len(recov) != 1 {
t.Fatalf("there should be only one pin, got = %d", len(recov))
}
if recov[0].Status != api.TrackerStatusPinned {
t.Errorf("the pin should have been recovered, got = %v", recov[0].Status)
}
}