ipfs-cluster/README.md
Hector Sanjuan c18b4beea3 Try to go more to the point in the readme. Move quickstart guide to docs/
License: MIT
Signed-off-by: Hector Sanjuan <hector@protocol.ai>
2017-02-27 10:30:09 +01:00

9.1 KiB

ipfs-cluster

standard-readme compliant GoDoc Go Report Card Build Status Coverage Status

Collective pinning and composition for IPFS.

THIS SOFTWARE IS ALPHA

ipfs-cluster allows to replicate content (by pinning) in multiple IPFS nodes:

  • Works on top of the IPFS daemon by running one cluster peer per IPFS node (ipfs-cluster-service)
  • A replication_factor controls how many times a CID is pinned in the cluster
  • Provides an HTTP API and a command-line wrapper (ipfs-cluster-ctl)
  • Provides an IPFS daemon API Proxy which intercepts any "pin"/"unpin" requests and does cluster pinning instead
  • Peers share the state using Raft-based consensus. Uses the LibP2P stack (go-libp2p-raft, go-libp2p-rpc...)

Table of Contents

Maintainers and Roadmap

This project is captained by @hsanjuan. See the captain's log for a written summary of current status and upcoming features. You can also check out the project's Roadmap for a high level overview of what's coming and the project's Waffle Board to see what issues are being worked on at the moment.

Install

ipfs-cluster is written in Go. In order to install the ipfs-cluster-service the ipfs-cluster-ctl tool simply download this repository and run make as follows:

$ go get -u -d github.com/ipfs/ipfs-cluster
$ cd $GOPATH/src/github.com/ipfs/ipfs-cluster
$ make install

This will install ipfs-cluster-service and ipfs-cluster-ctl in your $GOPATH/bin folder. See the usage below.

Usage

ipfs-cluster-service

ipfs-cluster-service runs a cluster peer. Usage information can be obtained running:

$ ipfs-cluster-service -h

Before running ipfs-cluster-service for the first time, initialize a configuration file with:

$ ipfs-cluster-service -init

The configuration will be placed in ~/.ipfs-cluster/service.json by default.

You can add the multiaddresses for the other cluster peers the bootstrap variable. For example, here is a valid configuration for a single-peer cluster:

{
    "id": "QmXMhZ53zAoes8TYbKGn3rnm5nfWs5Wdu41Fhhfw9XmM5A",
    "private_key": "<redacted>",
    "cluster_peers": [],
    "bootstrap": [],
    "leave_on_shutdown": false,
    "cluster_multiaddress": "/ip4/0.0.0.0/tcp/9096",
    "api_listen_multiaddress": "/ip4/127.0.0.1/tcp/9094",
    "ipfs_proxy_listen_multiaddress": "/ip4/127.0.0.1/tcp/9095",
    "ipfs_node_multiaddress": "/ip4/127.0.0.1/tcp/5001",
    "consensus_data_folder": "/home/user/.ipfs-cluster/data",
    "state_sync_seconds": 60,
    "replication_factor": -1
}

The configuration file should probably be identical among all cluster peers, except for the id and private_key fields. Once every cluster peer has the configuration in place, you can run ipfs-cluster-service to start the cluster. See the additional docs section for detailed documentation on how to build a cluster.

Clusters using cluster_peers

The cluster_peers configuration variable holds a list of current cluster members. If you know the members of the cluster in advance, or you want to start a cluster fully in parallel, set cluster_peers in all configurations so that every peer knows the rest upon boot. Leave bootstrap empty. A cluster peer address looks like: /ip4/1.2.3.4/tcp/9096/<id>.

Clusters using bootstrap

When the cluster_peers variable is empty, the multiaddresses bootstrap can be used to have a peer join an existing cluster. The peer will contact those addresses (in order) until one of them succeeds in joining it to the cluster. When the peer is shut down, it will save the current cluster peers in the cluster_peers configuration variable for future use.

Bootstrap is a convenient method, but more prone to errors than cluster_peers. It can be used as well with ipfs-cluster-service --bootstrap <multiaddress>. Note that bootstrapping nodes with an old state (or diverging state) from the one running in the cluster may lead to problems with the consensus, so usually you would want to bootstrap blank nodes.

Debugging

ipfs-cluster-service offers two debugging options:

  • --debug enables debug logging from the ipfs-cluster, go-libp2p-raft and go-libp2p-rpc layers. This will be a very verbose log output, but at the same time it is the most informative.
  • --loglevel sets the log level ([error, warning, info, debug]) for the ipfs-cluster only, allowing to get an overview of the what cluster is doing. The default log-level is info.

ipfs-cluster-ctl

ipfs-cluster-ctl is the client application to manage the cluster nodes and perform actions. ipfs-cluster-ctl uses the HTTP API provided by the nodes and it is completely separate from the cluster service. It can talk to any cluster peer (--host) and uses localhost by default.

After installing, you can run ipfs-cluster-ctl --help to display general description and options, or alternatively ipfs-cluster-ctl help [cmd] to display information about supported commands.

In summary, it works as follows:

$ ipfs-cluster-ctl id                                                       # show cluster peer and ipfs daemon information
$ ipfs-cluster-ctl peers ls                                                 # list cluster peers
$ ipfs-cluster-ctl peers add /ip4/1.2.3.4/tcp/1234/<peerid>                 # add a new cluster peer
$ ipfs-cluster-ctl peers rm <peerid>                                        # remove a cluster peer
$ ipfs-cluster-ctl pin add Qma4Lid2T1F68E3Xa3CpE6vVJDLwxXLD8RfiB9g1Tmqp58   # pins a CID in the cluster
$ ipfs-cluster-ctl pin rm Qma4Lid2T1F68E3Xa3CpE6vVJDLwxXLD8RfiB9g1Tmqp58    # unpins a CID from the cluster
$ ipfs-cluster-ctl status                                                   # display tracked CIDs information
$ ipfs-cluster-ctl sync Qma4Lid2T1F68E3Xa3CpE6vVJDLwxXLD8RfiB9g1Tmqp58      # sync information from the IPFS daemon
$ ipfs-cluster-ctl recover Qma4Lid2T1F68E3Xa3CpE6vVJDLwxXLD8RfiB9g1Tmqp58   # attempt to re-pin/unpin CIDs in error state

Debugging

ipfs-cluster-ctl provides a --debug flag which allows to inspect request paths and raw response bodies.

Go

IPFS Cluster nodes can be launched directly from Go. The Cluster object provides methods to interact with the cluster and perform actions.

Documentation and examples on how to use IPFS Cluster from Go can be found in godoc.org/github.com/ipfs/ipfs-cluster.

Additional docs

You can find more information and detailed guides:

Note: please contribute to improve and add more documentation!

API

TODO: Swagger

This is a quick summary of API endpoints offered by the Rest API component (these may change before 1.0):

Method Endpoint Comment
GET /id Cluster peer information
GET /version Cluster version
GET /peers Cluster peers
POST /peers Add new peer
DELETE /peers/{peerID} Remove a peer
GET /pinlist List of pins in the consensus state
GET /pins Status of all tracked CIDs
POST /pins/sync Sync all
GET /pins/{cid} Status of single CID
POST /pins/{cid} Pin CID
DELETE /pins/{cid} Unpin CID
POST /pins/{cid}/sync Sync CID
POST /pins/{cid}/recover Recover CID

Architecture

The best place to get an overview of how cluster works, what components exist etc. is the architecture.md doc.

Contribute

PRs accepted.

Small note: If editing the README, please conform to the standard-readme specification.

License

MIT © Protocol Labs, Inc.